Nuprl Lemma : co-w_wf

[A:Type]. (co-w(A) ∈ Type)


Proof




Definitions occuring in Statement :  co-w: co-w(A) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-w: co-w(A) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  corec_wf unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality unionEquality hypothesis functionEquality hypothesisEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Type].  (co-w(A)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-10_05_33
Last ObjectModification: 2015_12_27-PM-05_50_43

Theory : bar!induction


Home Index