Nuprl Lemma : co-w-ext
∀[A:Type]. co-w(A) ≡ Unit + (A ⟶ co-w(A))
Proof
Definitions occuring in Statement : 
co-w: co-w(A)
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
co-w: co-w(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
corec-ext, 
unit_wf2, 
continuous-monotone-union, 
continuous-monotone-constant, 
continuous-monotone-function, 
continuous-monotone-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
unionEquality, 
hypothesis, 
functionEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality
Latex:
\mforall{}[A:Type].  co-w(A)  \mequiv{}  Unit  +  (A  {}\mrightarrow{}  co-w(A))
Date html generated:
2016_05_15-PM-10_05_35
Last ObjectModification:
2015_12_27-PM-05_50_42
Theory : bar!induction
Home
Index