Nuprl Lemma : co-w-ext

[A:Type]. co-w(A) ≡ Unit (A ⟶ co-w(A))


Proof




Definitions occuring in Statement :  co-w: co-w(A) ext-eq: A ≡ B uall: [x:A]. B[x] unit: Unit function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T co-w: co-w(A) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  corec-ext unit_wf2 continuous-monotone-union continuous-monotone-constant continuous-monotone-function continuous-monotone-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality unionEquality hypothesis functionEquality hypothesisEquality universeEquality independent_isectElimination dependent_functionElimination independent_functionElimination productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[A:Type].  co-w(A)  \mequiv{}  Unit  +  (A  {}\mrightarrow{}  co-w(A))



Date html generated: 2016_05_15-PM-10_05_35
Last ObjectModification: 2015_12_27-PM-05_50_42

Theory : bar!induction


Home Index