Nuprl Lemma : continuous-monotone-function

[F:Type ⟶ Type]. ∀[A:Type]. ContinuousMonotone(T.A ⟶ F[T]) supposing ContinuousMonotone(T.F[T])


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] all: x:A. B[x] continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B type-continuous: Continuous(T.F[T]) prop: so_lambda: λ2x.t[x]
Lemmas referenced :  continuous-monotone-depfunction subtype_rel_wf nat_wf continuous-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality universeEquality independent_isectElimination lambdaFormation hypothesis because_Cache productElimination independent_pairEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[A:Type].  ContinuousMonotone(T.A  {}\mrightarrow{}  F[T])  supposing  ContinuousMonotone(T.F[T])



Date html generated: 2016_05_13-PM-04_09_48
Last ObjectModification: 2015_12_26-AM-11_22_33

Theory : subtype_1


Home Index