Nuprl Lemma : continuous-monotone-depfunction

[A:Type]. ∀[F:Type ⟶ A ⟶ Type].  ContinuousMonotone(T.a:A ⟶ F[T;a]) supposing ∀a:A. ContinuousMonotone(T.F[T;a])


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B all: x:A. B[x] type-continuous: Continuous(T.F[T]) prop: nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q
Lemmas referenced :  subtype_rel_dep_function subtype_rel_wf nat_wf all_wf continuous-monotone_wf false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality because_Cache independent_isectElimination hypothesis lambdaFormation dependent_functionElimination productElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality isectEquality functionEquality cumulativity independent_pairEquality instantiate dependent_set_memberEquality natural_numberEquality functionExtensionality

Latex:
\mforall{}[A:Type].  \mforall{}[F:Type  {}\mrightarrow{}  A  {}\mrightarrow{}  Type].
    ContinuousMonotone(T.a:A  {}\mrightarrow{}  F[T;a])  supposing  \mforall{}a:A.  ContinuousMonotone(T.F[T;a])



Date html generated: 2016_05_13-PM-04_09_42
Last ObjectModification: 2015_12_26-AM-11_22_45

Theory : subtype_1


Home Index