Nuprl Lemma : continuous-monotone-depfunction
∀[A:Type]. ∀[F:Type ⟶ A ⟶ Type].  ContinuousMonotone(T.a:A ⟶ F[T;a]) supposing ∀a:A. ContinuousMonotone(T.F[T;a])
Proof
Definitions occuring in Statement : 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
and: P ∧ Q
, 
type-monotone: Monotone(T.F[T])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
type-continuous: Continuous(T.F[T])
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
subtype_rel_dep_function, 
subtype_rel_wf, 
nat_wf, 
all_wf, 
continuous-monotone_wf, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isectEquality, 
functionEquality, 
cumulativity, 
independent_pairEquality, 
instantiate, 
dependent_set_memberEquality, 
natural_numberEquality, 
functionExtensionality
Latex:
\mforall{}[A:Type].  \mforall{}[F:Type  {}\mrightarrow{}  A  {}\mrightarrow{}  Type].
    ContinuousMonotone(T.a:A  {}\mrightarrow{}  F[T;a])  supposing  \mforall{}a:A.  ContinuousMonotone(T.F[T;a])
Date html generated:
2016_05_13-PM-04_09_42
Last ObjectModification:
2015_12_26-AM-11_22_45
Theory : subtype_1
Home
Index