Nuprl Lemma : continuous-monotone-union

F,G:Type ⟶ Type.  (ContinuousMonotone(T.F[T])  ContinuousMonotone(T.G[T])  ContinuousMonotone(T.F[T] G[T]))


Proof




Definitions occuring in Statement :  continuous-monotone: ContinuousMonotone(T.F[T]) so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  so_apply: x[s] all: x:A. B[x] implies:  Q continuous-monotone: ContinuousMonotone(T.F[T]) and: P ∧ Q type-monotone: Monotone(T.F[T]) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a type-continuous: Continuous(T.F[T]) subtype_rel: A ⊆B so_lambda: λ2x.t[x] strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B guard: {T} prop:
Lemmas referenced :  subtype_rel_sum subtype_rel_wf strong-continuous-union nat_wf subtype_rel_weakening continuous-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality independent_isectElimination hypothesis productElimination axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality lambdaEquality isectEquality independent_pairEquality functionEquality cumulativity unionEquality

Latex:
\mforall{}F,G:Type  {}\mrightarrow{}  Type.
    (ContinuousMonotone(T.F[T])  {}\mRightarrow{}  ContinuousMonotone(T.G[T])  {}\mRightarrow{}  ContinuousMonotone(T.F[T]  +  G[T]))



Date html generated: 2016_05_13-PM-04_10_10
Last ObjectModification: 2015_12_26-AM-11_22_20

Theory : subtype_1


Home Index