Nuprl Lemma : co-w-null_wf
∀[A:Type]. ∀[w:co-w(A)].  (co-w-null(w) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
co-w-null: co-w-null(w)
, 
co-w: co-w(A)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
co-w-null: co-w-null(w)
Lemmas referenced : 
co-w-ext, 
co-w_wf, 
subtype_rel_weakening, 
unit_wf2, 
equal_wf, 
isl_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
applyEquality, 
unionEquality, 
functionEquality, 
independent_isectElimination, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  \mforall{}[w:co-w(A)].    (co-w-null(w)  \mmember{}  \mBbbB{})
Date html generated:
2018_05_21-PM-10_17_53
Last ObjectModification:
2017_07_26-PM-06_36_28
Theory : bar!induction
Home
Index