Nuprl Lemma : co-w-null_wf

[A:Type]. ∀[w:co-w(A)].  (co-w-null(w) ∈ 𝔹)


Proof




Definitions occuring in Statement :  co-w-null: co-w-null(w) co-w: co-w(A) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q prop: co-w-null: co-w-null(w)
Lemmas referenced :  co-w-ext co-w_wf subtype_rel_weakening unit_wf2 equal_wf isl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry cumulativity isect_memberEquality because_Cache universeEquality applyEquality unionEquality functionEquality independent_isectElimination lambdaFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[w:co-w(A)].    (co-w-null(w)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-10_17_53
Last ObjectModification: 2017_07_26-PM-06_36_28

Theory : bar!induction


Home Index