Nuprl Lemma : add-wf-bar
∀[x,y:partial(Base)]. (x + y ∈ bar(ℤ))
Proof
Definitions occuring in Statement :
bar: bar(T)
,
partial: partial(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
add: n + m
,
int: ℤ
,
base: Base
Definitions unfolded in proof :
bar: bar(T)
Lemmas referenced :
add-wf-partial
Rules used in proof :
cut,
lemma_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
hypothesis
Latex:
\mforall{}[x,y:partial(Base)]. (x + y \mmember{} bar(\mBbbZ{}))
Date html generated:
2016_07_08-PM-05_18_44
Last ObjectModification:
2016_01_05-PM-11_53_43
Theory : bar!type
Home
Index