Nuprl Lemma : add-wf-partial

[x,y:partial(Base)].  (x y ∈ partial(ℤ))


Proof




Definitions occuring in Statement :  partial: partial(T) uall: [x:A]. B[x] member: t ∈ T add: m int: base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B has-value: (a)↓ and: P ∧ Q not: ¬A implies:  Q prop: false: False squash: T
Lemmas referenced :  partial-base partial_wf base_wf base-member-partial int-value-type is-exception_wf partial-not-exception
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  hypothesisEquality Error :isect_memberEquality_alt,  isectElimination thin Error :universeIsType,  intEquality independent_isectElimination baseApply closedConclusion baseClosed applyEquality callbyvalueAdd productElimination addEquality because_Cache Error :lambdaFormation_alt,  addExceptionCases independent_functionElimination voidElimination imageElimination imageMemberEquality

Latex:
\mforall{}[x,y:partial(Base)].    (x  +  y  \mmember{}  partial(\mBbbZ{}))



Date html generated: 2019_06_20-PM-00_34_17
Last ObjectModification: 2018_10_06-PM-04_56_22

Theory : partial_1


Home Index