Nuprl Lemma : base-member-partial
∀[A:Type]. ∀[a:Base]. (a ∈ partial(A)) supposing ((¬is-exception(a)) and a ∈ A supposing (a)↓) supposing value-type(A)
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
value-type: value-type(T)
, 
has-value: (a)↓
, 
is-exception: is-exception(t)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
base-partial: base-partial(T)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
partial: partial(T)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
has-value_wf_base, 
equal-wf-base, 
base_wf, 
value-type_wf, 
not_wf, 
is-exception_wf, 
base-partial_wf, 
per-partial_wf, 
per-partial-equiv_rel, 
per-partial-reflex, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
sqequalRule, 
Error :isectIsType, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
productEquality, 
isectEquality, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A:Type]
    \mforall{}[a:Base].  (a  \mmember{}  partial(A))  supposing  ((\mneg{}is-exception(a))  and  a  \mmember{}  A  supposing  (a)\mdownarrow{})  supposing  valu\000Ce-type(A)
Date html generated:
2019_06_20-PM-00_33_52
Last ObjectModification:
2018_09_26-PM-01_16_40
Theory : partial_1
Home
Index