Nuprl Lemma : partial-not-exception

[T:Type]. ∀[x:partial(T)].  is-exception(x))


Proof




Definitions occuring in Statement :  partial: partial(T) is-exception: is-exception(t) uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  prop: and: P ∧ Q quotient: x,y:A//B[x; y] partial: partial(T) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B squash: T is-exception: is-exception(t) rev_implies:  Q false: False not: ¬A implies:  Q iff: ⇐⇒ Q true: True
Lemmas referenced :  is-exception_wf base-partial-not-exception not_wf squash_wf true_wf equal-wf-base base-partial_wf per-partial_wf partial_wf
Rules used in proof :  universeEquality cumulativity because_Cache hypothesisEquality isectElimination lemma_by_obid productEquality hypothesis thin productElimination cut pertypeElimination sqequalRule pointwiseFunctionalityForEquality sqequalHypSubstitution introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed imageMemberEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality applyEquality sqleExtensionalEquality voidElimination independent_functionElimination lambdaFormation independent_pairFormation natural_numberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:partial(T)].    (\mneg{}is-exception(x))



Date html generated: 2019_06_20-PM-00_33_43
Last ObjectModification: 2018_10_15-PM-09_42_01

Theory : partial_1


Home Index