Nuprl Lemma : bar-type-continuous
∀[X:ℕ ⟶ {T:Type| value-type(T)} ]. ((⋂n:ℕ. bar(X[n])) ⊆r bar(⋂n:ℕ. X[n]))
Proof
Definitions occuring in Statement : 
bar: bar(T)
, 
nat: ℕ
, 
value-type: value-type(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
bar: bar(T)
Lemmas referenced : 
partial-type-continuous
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
\mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \{T:Type|  value-type(T)\}  ].  ((\mcap{}n:\mBbbN{}.  bar(X[n]))  \msubseteq{}r  bar(\mcap{}n:\mBbbN{}.  X[n]))
Date html generated:
2016_05_15-PM-10_04_36
Last ObjectModification:
2016_01_05-PM-06_42_12
Theory : bar!type
Home
Index