Nuprl Lemma : bar-type-continuous

[X:ℕ ⟶ {T:Type| value-type(T)} ]. ((⋂n:ℕbar(X[n])) ⊆bar(⋂n:ℕX[n]))


Proof




Definitions occuring in Statement :  bar: bar(T) nat: value-type: value-type(T) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  bar: bar(T)
Lemmas referenced :  partial-type-continuous
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid hypothesis

Latex:
\mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \{T:Type|  value-type(T)\}  ].  ((\mcap{}n:\mBbbN{}.  bar(X[n]))  \msubseteq{}r  bar(\mcap{}n:\mBbbN{}.  X[n]))



Date html generated: 2016_05_15-PM-10_04_36
Last ObjectModification: 2016_01_05-PM-06_42_12

Theory : bar!type


Home Index