Nuprl Lemma : partial-type-continuous

[X:ℕ ⟶ {T:Type| value-type(T)} ]. ((⋂n:ℕpartial(X[n])) ⊆partial(⋂n:ℕX[n]))


Proof




Definitions occuring in Statement :  partial: partial(T) nat: value-type: value-type(T) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_apply: x[s] all: x:A. B[x] implies:  Q base-partial: base-partial(T) partial: partial(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q cand: c∧ B prop: not: ¬A false: False guard: {T} quotient: x,y:A//B[x; y] per-partial: per-partial(T;x;y) less_than': less_than'(a;b) le: A ≤ B nat: uiff: uiff(P;Q) has-value: (a)↓ squash: T true: True sq_stable: SqStable(P)
Lemmas referenced :  istype-nat partial_wf istype-universe value-type_wf istype-base base-partial_wf nat_wf per-partial_wf per-partial-equiv_rel quotient-member-eq has-value_wf_base is-exception_wf istype-void le_wf istype-false partial-not-exception member_wf squash_wf true_wf equal-wf-base false_wf equal_functionality_wrt_subtype_rel2 sq_stable__value-type termination-equality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt isectIsType extract_by_obid hypothesis universeIsType sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality setElimination rename setIsType instantiate universeEquality sqequalRule axiomEquality functionIsType lambdaFormation_alt equalityIstype sqequalBase equalitySymmetry isectEquality because_Cache inhabitedIsType independent_isectElimination dependent_functionElimination independent_functionElimination dependent_set_memberEquality_alt isect_memberEquality_alt equalityTransitivity independent_pairFormation productIsType pertypeElimination promote_hyp productElimination equalityElimination equalityIsType1 natural_numberEquality axiomSqleEquality pointwiseFunctionality imageElimination imageMemberEquality baseClosed productEquality functionExtensionality lambdaEquality setEquality cumulativity dependent_set_memberEquality lambdaFormation

Latex:
\mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \{T:Type|  value-type(T)\}  ].  ((\mcap{}n:\mBbbN{}.  partial(X[n]))  \msubseteq{}r  partial(\mcap{}n:\mBbbN{}.  X[n]))



Date html generated: 2020_05_19-PM-09_36_42
Last ObjectModification: 2020_01_04-PM-07_57_15

Theory : partial_1


Home Index