Step * 1 of Lemma compact-nat-inf


1. : ℕ∞ ⟶ 𝔹
2. ni-selector(p) tt
⊢ (∃x:ℕ∞ff) ∨ (∀x:ℕ∞tt)
BY
((Assert ¬(∃x:ℕ∞ff) BY
          (RWO "ni-selector-property" THEN Auto))
   THEN OrRight
   THEN Auto
   THEN SimpleBoolCase ⌜x⌝⋅
   THEN Auto) }


Latex:


Latex:

1.  p  :  \mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}
2.  p  ni-selector(p)  =  tt
\mvdash{}  (\mexists{}x:\mBbbN{}\minfty{}.  p  x  =  ff)  \mvee{}  (\mforall{}x:\mBbbN{}\minfty{}.  p  x  =  tt)


By


Latex:
((Assert  \mneg{}(\mexists{}x:\mBbbN{}\minfty{}.  p  x  =  ff)  BY
                (RWO  "ni-selector-property"  0  THEN  Auto))
  THEN  OrRight
  THEN  Auto
  THEN  SimpleBoolCase  \mkleeneopen{}p  x\mkleeneclose{}\mcdot{}
  THEN  Auto)




Home Index