Nuprl Lemma : compact-nat-inf

p:ℕ∞ ⟶ 𝔹((∃x:ℕ∞ff) ∨ (∀x:ℕ∞tt))


Proof




Definitions occuring in Statement :  nat-inf: ℕ∞ bfalse: ff btrue: tt bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff or: P ∨ Q exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A false: False iff: ⇐⇒ Q and: P ∧ Q guard: {T} uimplies: supposing a assert: b ifthenelse: if then else fi  true: True rev_implies:  Q
Lemmas referenced :  nat-inf_wf ni-selector_wf bool_wf equal-wf-T-base all_wf equal_wf btrue_neq_bfalse ni-selector-property exists_wf not_wf iff_imp_equal_bool false_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality functionExtensionality hypothesisEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin unionElimination equalityElimination inlFormation dependent_pairFormation baseClosed sqequalRule lambdaEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination functionEquality voidElimination addLevel impliesFunctionality productElimination inrFormation because_Cache independent_isectElimination independent_pairFormation natural_numberEquality

Latex:
\mforall{}p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}.  ((\mexists{}x:\mBbbN{}\minfty{}.  p  x  =  ff)  \mvee{}  (\mforall{}x:\mBbbN{}\minfty{}.  p  x  =  tt))



Date html generated: 2017_10_01-AM-08_29_30
Last ObjectModification: 2017_07_26-PM-04_24_02

Theory : basic


Home Index