Nuprl Lemma : ni-selector_wf
∀[p:ℕ∞ ⟶ 𝔹]. (ni-selector(p) ∈ ℕ∞)
Proof
Definitions occuring in Statement : 
ni-selector: ni-selector(p)
, 
nat-inf: ℕ∞
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ni-selector: ni-selector(p)
, 
nat-inf: ℕ∞
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
bool_wf, 
nat-inf_wf, 
all_wf, 
assert_wf, 
lelt_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
assert-b-exists, 
assert_of_bnot, 
nat_wf, 
int_seg_wf, 
false_wf, 
int_seg_subtype_nat, 
nat2inf_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
b-exists_wf, 
bnot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
lambdaFormation, 
because_Cache, 
productElimination, 
independent_functionElimination, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}].  (ni-selector(p)  \mmember{}  \mBbbN{}\minfty{})
Date html generated:
2016_05_15-PM-01_47_14
Last ObjectModification:
2016_01_15-PM-11_17_22
Theory : basic
Home
Index