Nuprl Lemma : ni-selector_wf

[p:ℕ∞ ⟶ 𝔹]. (ni-selector(p) ∈ ℕ∞)


Proof




Definitions occuring in Statement :  ni-selector: ni-selector(p) nat-inf: ℕ∞ bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ni-selector: ni-selector(p) nat-inf: ℕ∞ nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  bool_wf nat-inf_wf all_wf assert_wf lelt_wf int_formula_prop_less_lemma intformless_wf decidable__lt assert-b-exists assert_of_bnot nat_wf int_seg_wf false_wf int_seg_subtype_nat nat2inf_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties b-exists_wf bnot_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin addEquality setElimination rename hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality lambdaFormation because_Cache productElimination independent_functionElimination functionEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}].  (ni-selector(p)  \mmember{}  \mBbbN{}\minfty{})



Date html generated: 2016_05_15-PM-01_47_14
Last ObjectModification: 2016_01_15-PM-11_17_22

Theory : basic


Home Index