Nuprl Lemma : nat2inf_wf

[n:ℕ]. (n∞ ∈ ℕ∞)


Proof




Definitions occuring in Statement :  nat2inf: n∞ nat-inf: ℕ∞ nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nat-inf: ℕ∞ uall: [x:A]. B[x] member: t ∈ T nat2inf: n∞ nat: all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a prop: so_lambda: λ2x.t[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_apply: x[s]
Lemmas referenced :  int_formula_prop_less_lemma intformless_wf decidable__lt le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties all_wf assert_wf assert_of_lt_int nat_wf lt_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_set_memberEquality lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaFormation productElimination independent_isectElimination addEquality natural_numberEquality functionEquality applyEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (n\minfty{}  \mmember{}  \mBbbN{}\minfty{})



Date html generated: 2016_05_15-PM-01_46_50
Last ObjectModification: 2016_01_15-PM-11_17_15

Theory : basic


Home Index