Nuprl Lemma : nat-inf_wf

ℕ∞ ∈ Type


Proof




Definitions occuring in Statement :  nat-inf: ℕ∞ member: t ∈ T universe: Type
Definitions unfolded in proof :  nat-inf: ℕ∞ member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s]
Lemmas referenced :  le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties assert_wf all_wf bool_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality functionEquality cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesisEquality dependent_set_memberEquality addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache

Latex:
\mBbbN{}\minfty{}  \mmember{}  Type



Date html generated: 2016_05_15-PM-01_46_46
Last ObjectModification: 2016_01_15-PM-11_16_42

Theory : basic


Home Index