Nuprl Lemma : ni-selector-property

p:ℕ∞ ⟶ 𝔹(∃x:ℕ∞ff ⇐⇒ ni-selector(p) ff)


Proof




Definitions occuring in Statement :  ni-selector: ni-selector(p) nat-inf: ℕ∞ bfalse: ff bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top guard: {T} subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) assert: b ifthenelse: if then else fi  true: True sq_type: SQType(T) bnot: ¬bb less_than: a < b nat-inf: ℕ∞ ni-selector: ni-selector(p) nat2inf: n∞ rev_uimplies: rev_uimplies(P;Q) nat-inf-infinity:
Lemmas referenced :  nat-inf_wf ni-selector_wf bool_wf equal_wf exists_wf equal-wf-T-base nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness nat2inf_wf less_than_transitivity1 less_than_irreflexivity int_seg_wf int_seg_properties int_seg_subtype_nat false_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype intformeq_wf int_formula_prop_eq_lemma le_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma nat_wf not_wf assert_wf not_assert_elim btrue_neq_bfalse assert_of_lt_int lt_int_wf all_wf iff_imp_equal_bool bnot_wf b-exists_wf assert-b-exists iff_wf assert_of_bnot true_wf equal-nat-inf-infinity and_wf assert_elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut applyEquality functionExtensionality hypothesisEquality introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalRule lambdaEquality baseClosed dependent_pairFormation functionEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache productElimination applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality promote_hyp instantiate cumulativity addEquality hyp_replacement addLevel impliesFunctionality impliesLevelFunctionality existsFunctionality existsLevelFunctionality

Latex:
\mforall{}p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}.  (\mexists{}x:\mBbbN{}\minfty{}.  p  x  =  ff  \mLeftarrow{}{}\mRightarrow{}  p  ni-selector(p)  =  ff)



Date html generated: 2017_10_01-AM-08_29_29
Last ObjectModification: 2017_07_26-PM-04_24_01

Theory : basic


Home Index