Nuprl Lemma : equal-nat-inf-infinity
∀[x:ℕ∞]. uiff(x = ∞ ∈ ℕ∞;∀i:ℕ. (¬(x = i∞ ∈ ℕ∞)))
Proof
Definitions occuring in Statement : 
nat-inf-infinity: ∞
, 
nat2inf: n∞
, 
nat-inf: ℕ∞
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat-inf: ℕ∞
, 
nat-inf-infinity: ∞
, 
nat: ℕ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
less_than: a < b
, 
nat2inf: n∞
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
subtract: n - m
, 
squash: ↓T
Lemmas referenced : 
equal_wf, 
nat-inf_wf, 
nat2inf_wf, 
nat_wf, 
equal-wf-T-base, 
all_wf, 
not_wf, 
nat-inf-infinity-new, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf, 
bool_wf, 
decidable__lt, 
lelt_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
assert_wf, 
iff_imp_equal_bool, 
lt_int_wf, 
true_wf, 
assert_of_lt_int, 
iff_wf, 
add-zero, 
decidable__equal_bool, 
assert_elim, 
btrue_neq_bfalse, 
subtype_base_sq, 
int_subtype_base, 
eqtt_to_assert, 
equal-wf-base, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
minus-one-mul, 
add-commutes, 
add-associates, 
add-mul-special, 
zero-mul, 
zero-add, 
squash_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
baseClosed, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
functionExtensionality, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
computeAll, 
unionElimination, 
applyEquality, 
hypothesis_subsumption, 
equalityElimination, 
addEquality, 
functionEquality, 
addLevel, 
impliesFunctionality, 
instantiate, 
cumulativity, 
promote_hyp, 
imageElimination, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality
Latex:
\mforall{}[x:\mBbbN{}\minfty{}].  uiff(x  =  \minfty{};\mforall{}i:\mBbbN{}.  (\mneg{}(x  =  i\minfty{})))
Date html generated:
2017_10_01-AM-08_29_25
Last ObjectModification:
2017_07_26-PM-04_23_57
Theory : basic
Home
Index