Nuprl Lemma : equal-nat-inf-infinity

[x:ℕ∞]. uiff(x = ∞ ∈ ℕ∞;∀i:ℕ(x i∞ ∈ ℕ∞)))


Proof




Definitions occuring in Statement :  nat-inf-infinity: nat2inf: n∞ nat-inf: ℕ∞ nat: uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q false: False prop: so_lambda: λ2x.t[x] so_apply: x[s] nat-inf: ℕ∞ nat-inf-infinity: nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff less_than: a < b nat2inf: n∞ assert: b ifthenelse: if then else fi  iff: ⇐⇒ Q rev_implies:  Q true: True sq_type: SQType(T) bnot: ¬bb subtract: m squash: T
Lemmas referenced :  equal_wf nat-inf_wf nat2inf_wf nat_wf equal-wf-T-base all_wf not_wf nat-inf-infinity-new nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma le_wf bool_wf decidable__lt lelt_wf itermAdd_wf int_term_value_add_lemma assert_wf iff_imp_equal_bool lt_int_wf true_wf assert_of_lt_int iff_wf add-zero decidable__equal_bool assert_elim btrue_neq_bfalse subtype_base_sq int_subtype_base eqtt_to_assert equal-wf-base eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot minus-one-mul add-commutes add-associates add-mul-special zero-mul zero-add squash_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache baseClosed productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality hyp_replacement applyLambdaEquality setElimination rename dependent_set_memberEquality functionExtensionality intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll unionElimination applyEquality hypothesis_subsumption equalityElimination addEquality functionEquality addLevel impliesFunctionality instantiate cumulativity promote_hyp imageElimination universeEquality equalityUniverse levelHypothesis imageMemberEquality

Latex:
\mforall{}[x:\mBbbN{}\minfty{}].  uiff(x  =  \minfty{};\mforall{}i:\mBbbN{}.  (\mneg{}(x  =  i\minfty{})))



Date html generated: 2017_10_01-AM-08_29_25
Last ObjectModification: 2017_07_26-PM-04_23_57

Theory : basic


Home Index