Nuprl Lemma : nat-inf-infinity-new
∀[n:ℕ]. (¬(∞ = n∞ ∈ ℕ∞))
Proof
Definitions occuring in Statement : 
nat-inf-infinity: ∞
, 
nat2inf: n∞
, 
nat-inf: ℕ∞
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
nat-inf: ℕ∞
, 
nat2inf: n∞
, 
nat-inf-infinity: ∞
, 
nat: ℕ
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
Lemmas referenced : 
equal-wf-base-T, 
nat-inf_wf, 
nat2inf_wf, 
nat_wf, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert_of_tt, 
assert_of_lt_int, 
nat_properties, 
satisfiable-full-omega-tt, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
baseClosed, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
applyLambdaEquality, 
applyEquality, 
setElimination, 
rename, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll
Latex:
\mforall{}[n:\mBbbN{}].  (\mneg{}(\minfty{}  =  n\minfty{}))
Date html generated:
2017_10_01-AM-08_29_20
Last ObjectModification:
2017_07_26-PM-04_23_56
Theory : basic
Home
Index