Nuprl Lemma : nat-inf-infinity-new

[n:ℕ]. (∞ n∞ ∈ ℕ∞))


Proof




Definitions occuring in Statement :  nat-inf-infinity: nat2inf: n∞ nat-inf: ℕ∞ nat: uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False prop: nat-inf: ℕ∞ nat2inf: n∞ nat-inf-infinity: nat: uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  equal-wf-base-T nat-inf_wf nat2inf_wf nat_wf subtype_base_sq bool_wf bool_subtype_base assert_of_tt assert_of_lt_int nat_properties satisfiable-full-omega-tt intformless_wf itermVar_wf int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination baseClosed hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination applyLambdaEquality applyEquality setElimination rename instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry productElimination independent_pairFormation natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}[n:\mBbbN{}].  (\mneg{}(\minfty{}  =  n\minfty{}))



Date html generated: 2017_10_01-AM-08_29_20
Last ObjectModification: 2017_07_26-PM-04_23_56

Theory : basic


Home Index