Step
*
2
of Lemma
dl-sem_functionality1
1. x : ℕ
2. [K] : Type
3. [R] : ℕ ⟶ K ⟶ K ⟶ ℙ
4. [P] : ℕ ⟶ K ⟶ ℙ
5. [P'] : ℕ ⟶ K ⟶ ℙ
6. (∀n∈dl-prop-atoms() prop(atm(x)).∀k:K. (P[n] k
⇐⇒ P'[n] k))
7. dl-kind(prop(atm(x))) = "prop" ∈ Atom
⊢ ∀k:K. (P[x] k
⇐⇒ P'[x] k)
BY
{ ((RWO "l_all_iff" (-2) THENA Auto) THEN InstHyp [⌜x⌝] (-2)⋅ THEN Auto) }
1
.....antecedent.....
1. x : ℕ
2. [K] : Type
3. [R] : ℕ ⟶ K ⟶ K ⟶ ℙ
4. [P] : ℕ ⟶ K ⟶ ℙ
5. [P'] : ℕ ⟶ K ⟶ ℙ
6. ∀n:ℕ. ((n ∈ dl-prop-atoms() prop(atm(x)))
⇒ (∀k:K. (P[n] k
⇐⇒ P'[n] k)))
7. dl-kind(prop(atm(x))) = "prop" ∈ Atom
⊢ (x ∈ dl-prop-atoms() prop(atm(x)))
Latex:
Latex:
1. x : \mBbbN{}
2. [K] : Type
3. [R] : \mBbbN{} {}\mrightarrow{} K {}\mrightarrow{} K {}\mrightarrow{} \mBbbP{}
4. [P] : \mBbbN{} {}\mrightarrow{} K {}\mrightarrow{} \mBbbP{}
5. [P'] : \mBbbN{} {}\mrightarrow{} K {}\mrightarrow{} \mBbbP{}
6. (\mforall{}n\mmember{}dl-prop-atoms() prop(atm(x)).\mforall{}k:K. (P[n] k \mLeftarrow{}{}\mRightarrow{} P'[n] k))
7. dl-kind(prop(atm(x))) = "prop"
\mvdash{} \mforall{}k:K. (P[x] k \mLeftarrow{}{}\mRightarrow{} P'[x] k)
By
Latex:
((RWO "l\_all\_iff" (-2) THENA Auto) THEN InstHyp [\mkleeneopen{}x\mkleeneclose{}] (-2)\mcdot{} THEN Auto)
Home
Index