Nuprl Lemma : dl-sem_functionality1

x:dl-Obj()
  ∀[K:Type]. ∀[R:ℕ ⟶ K ⟶ K ⟶ ℙ]. ∀[P,P':ℕ ⟶ K ⟶ ℙ].
    ((∀n∈dl-prop-atoms() x.∀k:K. (P[n] ⇐⇒ P'[n] k))
     dl-same-sem(x;K;dl-sem(K;n.R[n];m.P[m]) x;dl-sem(K;n.R[n];m.P'[m]) x))


Proof




Definitions occuring in Statement :  dl-prop-atoms: dl-prop-atoms() dl-same-sem: dl-same-sem(x;K;r;s) dl-sem: dl-sem(K;n.R[n];m.P[m]) dl-Obj: dl-Obj() l_all: (∀x∈L.P[x]) nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  dl-induction uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T prop: implies:  Q all: x:A. B[x] so_apply: x[s] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B dl-same-sem: dl-same-sem(x;K;r;s) dl-sem: dl-sem(K;n.R[n];m.P[m]) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] dl-kind: dl-kind(d) mobj-kind: mobj-kind(x) pi1: fst(t) dl-prog-obj: prog(x) uiff: uiff(P;Q) eq_atom: =a y assert: b ifthenelse: if then else fi  bfalse: ff dl-prop-atoms: dl-prop-atoms() dl-ind: dl-ind mrec_ind: mrec_ind(L;h;x) genrec-ap: genrec-ap decidable__atom_equal dl-aprog: atm(x) mk-prec: mk-prec(lbl;x) btrue: tt nil: [] it: dl-prog-sem: [|alpha|] dl-prop-sem: [|phi|] dl-prop-obj: prop(x) guard: {T} rel_implies: R1 => R2 infix_ap: y l_member: (x ∈ l) select: L[n] cons: [a b] cand: c∧ B less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  dl-induction uall_wf nat_wf l_all_wf dl-prop-atoms_wf iff_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat l_member_wf dl-same-sem_wf dl-sem_wf istype-universe subtype-TYPE dl-Obj_wf dl-ind-dl-aprog subtype_rel_self istype-atom set_subtype_base le_wf int_subtype_base assert_of_eq_atom nil_wf dl-ind-dl-comp l_all_append dl-prog-obj_wf dl-prog-sem_wf dl-kind_wf dl-comp_wf cons_wf atom_subtype_base dl-prog_wf dl-ind-dl-choose dl-choose_wf dl-ind-dl-iterate dl-iterate_wf dl-ind-dl-test dl-prop-sem_wf dl-test_wf dl-prop-obj_wf dl-prop_wf dl-ind-dl-aprop dl-aprop_wf dl-ind-dl-false dl-false_wf dl-implies_wf dl-ind-dl-implies dl-and_wf dl-ind-dl-and dl-or_wf dl-ind-dl-or dl-box_wf dl-ind-dl-box dl-diamond_wf dl-ind-dl-diamond rel_star_functionality_wrt_rel_implies rel_star_wf l_all_iff length_of_cons_lemma length_of_nil_lemma istype-less_than length_wf list_subtype_base decidable__atom_equal
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality_alt instantiate universeEquality isectEquality functionEquality cumulativity hypothesis hypothesisEquality applyEquality dependent_set_memberEquality_alt setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType because_Cache setIsType lambdaFormation_alt isect_memberFormation_alt inhabitedIsType equalityIstype baseApply closedConclusion baseClosed intEquality sqequalBase equalitySymmetry equalityTransitivity productElimination functionIsType productIsType promote_hyp atomEquality tokenEquality isectIsType independent_pairEquality functionIsTypeImplies unionIsType inlFormation_alt inrFormation_alt imageMemberEquality

Latex:
\mforall{}x:dl-Obj()
    \mforall{}[K:Type].  \mforall{}[R:\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P,P':\mBbbN{}  {}\mrightarrow{}  K  {}\mrightarrow{}  \mBbbP{}].
        ((\mforall{}n\mmember{}dl-prop-atoms()  x.\mforall{}k:K.  (P[n]  k  \mLeftarrow{}{}\mRightarrow{}  P'[n]  k))
        {}\mRightarrow{}  dl-same-sem(x;K;dl-sem(K;n.R[n];m.P[m])  x;dl-sem(K;n.R[n];m.P'[m])  x))



Date html generated: 2019_10_15-AM-11_43_59
Last ObjectModification: 2019_03_26-AM-11_51_57

Theory : dynamic!logic


Home Index