Nuprl Lemma : dl-prop-atoms_wf

dl-prop-atoms() ∈ ∀x:dl-Obj(). (ℕ List)


Proof




Definitions occuring in Statement :  dl-prop-atoms: dl-prop-atoms() dl-Obj: dl-Obj() list: List nat: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  dl-prop-atoms: dl-prop-atoms() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  dl-ind_wf list_wf nat_wf subtype-TYPE dl-Obj_wf nil_wf istype-nat append_wf dl-prog_wf dl-prop_wf cons_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality_alt hypothesis applyEquality universeIsType hypothesisEquality inhabitedIsType because_Cache

Latex:
dl-prop-atoms()  \mmember{}  \mforall{}x:dl-Obj().  (\mBbbN{}  List)



Date html generated: 2019_10_15-AM-11_43_53
Last ObjectModification: 2019_03_26-AM-11_30_55

Theory : dynamic!logic


Home Index