Nuprl Lemma : subtype-TYPE

Type ⊆TYPE


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  istype-universe
Rules used in proof :  hypothesis universeEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction instantiate cut lambdaEquality_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution universeMemberTYPE cumulativity hypothesisEquality

Latex:
Type  \msubseteq{}r  TYPE



Date html generated: 2019_10_15-AM-10_20_39
Last ObjectModification: 2019_08_20-PM-05_10_38

Theory : subtype_1


Home Index