Nuprl Lemma : subtype-TYPE
Type ⊆r TYPE
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
istype-universe
Rules used in proof : 
hypothesis, 
universeEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
instantiate, 
cut, 
lambdaEquality_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
universeMemberTYPE, 
cumulativity, 
hypothesisEquality
Latex:
Type  \msubseteq{}r  TYPE
Date html generated:
2019_10_15-AM-10_20_39
Last ObjectModification:
2019_08_20-PM-05_10_38
Theory : subtype_1
Home
Index