Nuprl Lemma : dl-iterate_wf

[x:Prog]. ((x)* ∈ Prog)


Proof




Definitions occuring in Statement :  dl-iterate: (x)* dl-prog: Prog uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] dl-prog: Prog dl-iterate: (x)* member: t ∈ T subtype_rel: A ⊆B mrec: mrec(L;i) prec: prec(lbl,p.a[lbl; p];i) tuple-type: tuple-type(L) list_ind: list_ind prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) map: map(f;as) mrec-spec: mrec-spec(L;lbl;p) apply-alist: apply-alist(eq;L;x) dl-Spec: dl-Spec() cons: [a b] ifthenelse: if then else fi  atom-deq: AtomDeq eq_atom: =a y pi1: fst(t) btrue: tt pi2: snd(t) bfalse: ff null: null(as) nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a less_than: a < b squash: T less_than': less_than'(a;b) length: ||as|| true: True and: P ∧ Q
Lemmas referenced :  mk-prec_wf-mrec dl-Spec_wf subtype_rel_self tuple-type_wf prec-arg-types_wf mrec-spec_wf istype-atom dl-prog_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis closedConclusion tokenEquality hypothesisEquality applyEquality atomEquality lambdaEquality_alt inhabitedIsType independent_isectElimination independent_pairFormation natural_numberEquality imageMemberEquality baseClosed universeIsType

Latex:
\mforall{}[x:Prog].  ((x)*  \mmember{}  Prog)



Date html generated: 2019_10_15-AM-11_39_30
Last ObjectModification: 2019_03_26-AM-11_24_05

Theory : dynamic!logic


Home Index