Nuprl Lemma : prec-arg-types_wf

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[i:P]. ∀[lbl:Atom].
  (prec-arg-types(lbl,p.a[lbl;p];i;lbl) ∈ Type List)


Proof




Definitions occuring in Statement :  prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  map_wf prec_wf list_wf istype-atom istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination unionEquality cumulativity hypothesisEquality universeEquality Error :lambdaEquality_alt,  equalityTransitivity hypothesis equalitySymmetry Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination applyEquality Error :equalityIstype,  dependent_functionElimination independent_functionElimination Error :unionIsType,  axiomEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :universeIsType,  Error :functionIsType

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].  \mforall{}[lbl:Atom].
    (prec-arg-types(lbl,p.a[lbl;p];i;lbl)  \mmember{}  Type  List)



Date html generated: 2019_06_20-PM-02_05_11
Last ObjectModification: 2019_02_22-PM-06_23_46

Theory : tuples


Home Index