Nuprl Lemma : prec_wf

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[i:P].  (prec(lbl,p.a[lbl;p];i) ∈ Type)


Proof




Definitions occuring in Statement :  prec: prec(lbl,p.a[lbl; p];i) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prec: prec(lbl,p.a[lbl; p];i) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  pcorec_wf has-value_wf-partial nat_wf set-value-type le_wf istype-int int-value-type pcorec-size_wf istype-atom list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule setEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :lambdaEquality_alt,  because_Cache hypothesis independent_isectElimination intEquality natural_numberEquality Error :inhabitedIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :functionIsType,  instantiate unionEquality cumulativity universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].    (prec(lbl,p.a[lbl;p];i)  \mmember{}  Type)



Date html generated: 2019_06_20-PM-02_04_21
Last ObjectModification: 2019_02_28-PM-02_06_35

Theory : tuples


Home Index