Nuprl Lemma : prec_wf
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[i:P].  (prec(lbl,p.a[lbl;p];i) ∈ Type)
Proof
Definitions occuring in Statement : 
prec: prec(lbl,p.a[lbl; p];i)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
pcorec_wf, 
has-value_wf-partial, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
pcorec-size_wf, 
istype-atom, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
intEquality, 
natural_numberEquality, 
Error :inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :functionIsType, 
instantiate, 
unionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].    (prec(lbl,p.a[lbl;p];i)  \mmember{}  Type)
Date html generated:
2019_06_20-PM-02_04_21
Last ObjectModification:
2019_02_28-PM-02_06_35
Theory : tuples
Home
Index