Nuprl Lemma : pcorec-size_wf
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)].
  (pcorec-size(lbl,p.a[lbl;p]) ∈ i:P ⟶ (pcorec(lbl,p.a[lbl;p]) i) ⟶ partial(ℕ))
Proof
Definitions occuring in Statement : 
pcorec-size: pcorec-size(lbl,p.a[lbl; p])
, 
pcorec: pcorec(lbl,p.a[lbl; p])
, 
list: T List
, 
partial: partial(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pcorec-size: pcorec-size(lbl,p.a[lbl; p])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
ptuple: ptuple(lbl,p.a[lbl; p];X)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
fix_wf-pcorec-partial-nat, 
add-wf-partial-nat, 
nat-partial-nat, 
istype-false, 
istype-le, 
add-sz_wf, 
ptuple_wf, 
istype-atom, 
partial_wf, 
nat_wf, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :universeIsType, 
because_Cache, 
Error :isect_memberEquality_alt, 
productElimination, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
hypothesis, 
setElimination, 
rename, 
Error :inhabitedIsType, 
Error :functionIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
unionEquality, 
cumulativity, 
universeEquality, 
Error :isectIsTypeImplies
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].
    (pcorec-size(lbl,p.a[lbl;p])  \mmember{}  i:P  {}\mrightarrow{}  (pcorec(lbl,p.a[lbl;p])  i)  {}\mrightarrow{}  partial(\mBbbN{}))
Date html generated:
2019_06_20-PM-02_04_16
Last ObjectModification:
2019_02_22-PM-03_32_14
Theory : tuples
Home
Index