Nuprl Lemma : fix_wf-pcorec-partial-nat

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[f:⋂X:P ⟶ Type
                                                          ((i:P ⟶ (X i) ⟶ partial(ℕ))
                                                          ⟶ i:P
                                                          ⟶ (ptuple(lbl,p.a[lbl;p];X) i)
                                                          ⟶ partial(ℕ))].
  (fix(f) ∈ i:P ⟶ (pcorec(lbl,p.a[lbl;p]) i) ⟶ partial(ℕ))


Proof




Definitions occuring in Statement :  pcorec: pcorec(lbl,p.a[lbl; p]) ptuple: ptuple(lbl,p.a[lbl; p];X) list: List partial: partial(T) nat: uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T apply: a fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  pcorec: pcorec(lbl,p.a[lbl; p]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  fix_wf_corec-family-partial-nat ptuple_wf istype-atom ptuple-monotone ptuple-continuous partial_wf nat_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :lambdaEquality_alt,  because_Cache applyEquality Error :universeIsType,  hypothesis Error :functionIsType,  Error :inhabitedIsType,  independent_isectElimination independent_pairFormation Error :isect_memberEquality_alt,  equalityTransitivity equalitySymmetry Error :isectIsType,  axiomEquality Error :isectIsTypeImplies,  instantiate unionEquality cumulativity universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[f:\mcap{}X:P  {}\mrightarrow{}  Type
                                                                                                                    ((i:P  {}\mrightarrow{}  (X  i)  {}\mrightarrow{}  partial(\mBbbN{}))
                                                                                                                    {}\mrightarrow{}  i:P
                                                                                                                    {}\mrightarrow{}  (ptuple(lbl,p.a[lbl;p];X)  i)
                                                                                                                    {}\mrightarrow{}  partial(\mBbbN{}))].
    (fix(f)  \mmember{}  i:P  {}\mrightarrow{}  (pcorec(lbl,p.a[lbl;p])  i)  {}\mrightarrow{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-02_04_09
Last ObjectModification: 2019_02_28-PM-02_06_36

Theory : tuples


Home Index