Nuprl Lemma : fix_wf_corec-family-partial-nat
∀[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].
  ∀[f:⋂T:P ⟶ Type. ((i:P ⟶ (T i) ⟶ partial(ℕ)) ⟶ i:P ⟶ (H[T] i) ⟶ partial(ℕ))]
    (fix(f) ∈ i:P ⟶ (corec-family(H) i) ⟶ partial(ℕ)) 
  supposing family-monotone{i:l}(P;H) ∧ type-family-continuous{i:l}(P;H)
Proof
Definitions occuring in Statement : 
corec-family: corec-family(H)
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
family-monotone: family-monotone{i:l}(P;H)
, 
partial: partial(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
prop: ℙ
Lemmas referenced : 
fix_wf_corec-family-partial1, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
nat-mono, 
partial_wf, 
family-monotone_wf, 
type-family-continuous_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isectIsType, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
because_Cache, 
applyEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :productIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    \mforall{}[f:\mcap{}T:P  {}\mrightarrow{}  Type.  ((i:P  {}\mrightarrow{}  (T  i)  {}\mrightarrow{}  partial(\mBbbN{}))  {}\mrightarrow{}  i:P  {}\mrightarrow{}  (H[T]  i)  {}\mrightarrow{}  partial(\mBbbN{}))]
        (fix(f)  \mmember{}  i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(\mBbbN{})) 
    supposing  family-monotone\{i:l\}(P;H)  \mwedge{}  type-family-continuous\{i:l\}(P;H)
Date html generated:
2019_06_20-PM-00_35_32
Last ObjectModification:
2019_02_20-PM-05_00_56
Theory : co-recursion
Home
Index