Nuprl Lemma : fix_wf_corec-family-partial-nat

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type].
  ∀[f:⋂T:P ⟶ Type. ((i:P ⟶ (T i) ⟶ partial(ℕ)) ⟶ i:P ⟶ (H[T] i) ⟶ partial(ℕ))]
    (fix(f) ∈ i:P ⟶ (corec-family(H) i) ⟶ partial(ℕ)) 
  supposing family-monotone{i:l}(P;H) ∧ type-family-continuous{i:l}(P;H)


Proof




Definitions occuring in Statement :  corec-family: corec-family(H) type-family-continuous: type-family-continuous{i:l}(P;H) family-monotone: family-monotone{i:l}(P;H) partial: partial(T) nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q member: t ∈ T apply: a fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q nat: so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B prop:
Lemmas referenced :  fix_wf_corec-family-partial1 nat_wf set-value-type le_wf istype-int int-value-type nat-mono partial_wf family-monotone_wf type-family-continuous_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis independent_isectElimination sqequalRule intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry Error :isectIsType,  Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  because_Cache applyEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :productIsType,  instantiate universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    \mforall{}[f:\mcap{}T:P  {}\mrightarrow{}  Type.  ((i:P  {}\mrightarrow{}  (T  i)  {}\mrightarrow{}  partial(\mBbbN{}))  {}\mrightarrow{}  i:P  {}\mrightarrow{}  (H[T]  i)  {}\mrightarrow{}  partial(\mBbbN{}))]
        (fix(f)  \mmember{}  i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(\mBbbN{})) 
    supposing  family-monotone\{i:l\}(P;H)  \mwedge{}  type-family-continuous\{i:l\}(P;H)



Date html generated: 2019_06_20-PM-00_35_32
Last ObjectModification: 2019_02_20-PM-05_00_56

Theory : co-recursion


Home Index