Nuprl Lemma : fix_wf_corec-family-partial1

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type]. ∀[A:Type].
  (∀[f:⋂T:P ⟶ Type. ((i:P ⟶ (T i) ⟶ partial(A)) ⟶ i:P ⟶ (H[T] i) ⟶ partial(A))]
     (fix(f) ∈ i:P ⟶ (corec-family(H) i) ⟶ partial(A))) supposing 
     ((family-monotone{i:l}(P;H) ∧ type-family-continuous{i:l}(P;H)) and 
     mono(A) and 
     value-type(A))


Proof




Definitions occuring in Statement :  corec-family: corec-family(H) type-family-continuous: type-family-continuous{i:l}(P;H) family-monotone: family-monotone{i:l}(P;H) partial: partial(T) mono: mono(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q member: t ∈ T apply: a fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q so_apply: x[s] prop: cand: c∧ B subtype_rel: A ⊆B ext-family: F ≡ G all: x:A. B[x] so_lambda: λ2x.t[x] ext-eq: A ≡ B istype: istype(T)
Lemmas referenced :  partial_wf family-monotone_wf type-family-continuous_wf mono_wf value-type_wf istype-universe corec-family-ext corec-family_wf subtype_rel_dep_function fix-corec-family-partial1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :isectIsType,  Error :functionIsType,  Error :universeIsType,  hypothesisEquality Error :inhabitedIsType,  because_Cache applyEquality extract_by_obid isectElimination Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :productIsType,  instantiate universeEquality independent_isectElimination independent_pairFormation Error :lambdaEquality_alt,  functionExtensionality dependent_functionElimination Error :lambdaFormation_alt,  functionEquality

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].  \mforall{}[A:Type].
    (\mforall{}[f:\mcap{}T:P  {}\mrightarrow{}  Type.  ((i:P  {}\mrightarrow{}  (T  i)  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  i:P  {}\mrightarrow{}  (H[T]  i)  {}\mrightarrow{}  partial(A))]
          (fix(f)  \mmember{}  i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(A)))  supposing 
          ((family-monotone\{i:l\}(P;H)  \mwedge{}  type-family-continuous\{i:l\}(P;H))  and 
          mono(A)  and 
          value-type(A))



Date html generated: 2019_06_20-PM-00_35_30
Last ObjectModification: 2019_02_20-PM-04_58_37

Theory : co-recursion


Home Index