Nuprl Lemma : fix_wf_corec-family-partial1
∀[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type]. ∀[A:Type].
  (∀[f:⋂T:P ⟶ Type. ((i:P ⟶ (T i) ⟶ partial(A)) ⟶ i:P ⟶ (H[T] i) ⟶ partial(A))]
     (fix(f) ∈ i:P ⟶ (corec-family(H) i) ⟶ partial(A))) supposing 
     ((family-monotone{i:l}(P;H) ∧ type-family-continuous{i:l}(P;H)) and 
     mono(A) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
corec-family: corec-family(H)
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
family-monotone: family-monotone{i:l}(P;H)
, 
partial: partial(T)
, 
mono: mono(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
ext-family: F ≡ G
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
ext-eq: A ≡ B
, 
istype: istype(T)
Lemmas referenced : 
partial_wf, 
family-monotone_wf, 
type-family-continuous_wf, 
mono_wf, 
value-type_wf, 
istype-universe, 
corec-family-ext, 
corec-family_wf, 
subtype_rel_dep_function, 
fix-corec-family-partial1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isectIsType, 
Error :functionIsType, 
Error :universeIsType, 
hypothesisEquality, 
Error :inhabitedIsType, 
because_Cache, 
applyEquality, 
extract_by_obid, 
isectElimination, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :productIsType, 
instantiate, 
universeEquality, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaEquality_alt, 
functionExtensionality, 
dependent_functionElimination, 
Error :lambdaFormation_alt, 
functionEquality
Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].  \mforall{}[A:Type].
    (\mforall{}[f:\mcap{}T:P  {}\mrightarrow{}  Type.  ((i:P  {}\mrightarrow{}  (T  i)  {}\mrightarrow{}  partial(A))  {}\mrightarrow{}  i:P  {}\mrightarrow{}  (H[T]  i)  {}\mrightarrow{}  partial(A))]
          (fix(f)  \mmember{}  i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(A)))  supposing 
          ((family-monotone\{i:l\}(P;H)  \mwedge{}  type-family-continuous\{i:l\}(P;H))  and 
          mono(A)  and 
          value-type(A))
Date html generated:
2019_06_20-PM-00_35_30
Last ObjectModification:
2019_02_20-PM-04_58_37
Theory : co-recursion
Home
Index