Nuprl Lemma : fix-corec-family-partial1
∀[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type]. ∀[A:Type].
  (∀[F:(P ⟶ Type) ⟶ P ⟶ Type]. ∀[f:(i:P ⟶ (corec-family(H) i) ⟶ partial(A))
                                      ⟶ i:P
                                      ⟶ (corec-family(H) i)
                                      ⟶ partial(A)].
     (fix(f) ∈ i:P ⟶ (corec-family(H) i) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
corec-family: corec-family(H)
, 
partial: partial(T)
, 
mono: mono(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
Lemmas referenced : 
void_wf, 
fixpoint-induction-bottom2, 
corec-family_wf, 
partial_wf, 
strictness-apply, 
istype-void, 
bottom_wf-partial, 
mono_wf, 
value-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
functionExtensionality, 
voidElimination, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
Error :functionExtensionality_alt, 
because_Cache, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
functionEquality, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
Error :isect_memberEquality_alt, 
Error :lambdaEquality_alt, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
Error :isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].  \mforall{}[A:Type].
    (\mforall{}[F:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].  \mforall{}[f:(i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(A))
                                                                            {}\mrightarrow{}  i:P
                                                                            {}\mrightarrow{}  (corec-family(H)  i)
                                                                            {}\mrightarrow{}  partial(A)].
          (fix(f)  \mmember{}  i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))
Date html generated:
2019_06_20-PM-00_35_29
Last ObjectModification:
2019_02_20-PM-02_32_07
Theory : co-recursion
Home
Index