Nuprl Lemma : fix-corec-family-partial1

[P:Type]. ∀[H:(P ⟶ Type) ⟶ P ⟶ Type]. ∀[A:Type].
  (∀[F:(P ⟶ Type) ⟶ P ⟶ Type]. ∀[f:(i:P ⟶ (corec-family(H) i) ⟶ partial(A))
                                      ⟶ i:P
                                      ⟶ (corec-family(H) i)
                                      ⟶ partial(A)].
     (fix(f) ∈ i:P ⟶ (corec-family(H) i) ⟶ partial(A))) supposing 
     (mono(A) and 
     value-type(A))


Proof




Definitions occuring in Statement :  corec-family: corec-family(H) partial: partial(T) mono: mono(T) value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T apply: a fix: fix(F) function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top so_lambda: λ2x.t[x] prop:
Lemmas referenced :  void_wf fixpoint-induction-bottom2 corec-family_wf partial_wf strictness-apply istype-void bottom_wf-partial mono_wf value-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut functionExtensionality voidElimination thin instantiate extract_by_obid hypothesis Error :functionExtensionality_alt,  because_Cache sqequalHypSubstitution isectElimination hypothesisEquality functionEquality applyEquality independent_isectElimination sqequalRule Error :isect_memberEquality_alt,  Error :lambdaEquality_alt,  Error :functionIsType,  Error :inhabitedIsType,  Error :universeIsType,  equalityTransitivity equalitySymmetry axiomEquality Error :isectIsTypeImplies,  universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[H:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].  \mforall{}[A:Type].
    (\mforall{}[F:(P  {}\mrightarrow{}  Type)  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].  \mforall{}[f:(i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(A))
                                                                            {}\mrightarrow{}  i:P
                                                                            {}\mrightarrow{}  (corec-family(H)  i)
                                                                            {}\mrightarrow{}  partial(A)].
          (fix(f)  \mmember{}  i:P  {}\mrightarrow{}  (corec-family(H)  i)  {}\mrightarrow{}  partial(A)))  supposing 
          (mono(A)  and 
          value-type(A))



Date html generated: 2019_06_20-PM-00_35_29
Last ObjectModification: 2019_02_20-PM-02_32_07

Theory : co-recursion


Home Index