Nuprl Lemma : ptuple-monotone

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)].  family-monotone{i:l}(P;λX.ptuple(lbl,p.a[lbl;p];X))


Proof




Definitions occuring in Statement :  ptuple: ptuple(lbl,p.a[lbl; p];X) list: List family-monotone: family-monotone{i:l}(P;H) uall: [x:A]. B[x] so_apply: x[s1;s2] lambda: λx.A[x] function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T family-monotone: family-monotone{i:l}(P;H) all: x:A. B[x] implies:  Q sub-family: F ⊆ G ptuple: ptuple(lbl,p.a[lbl; p];X) prop: subtype_rel: A ⊆B so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  sub-family_wf istype-atom list_wf istype-universe less_than_wf length_wf tuple-type_wf map_wf istype-less_than subtype_rel_self tuple-type-monotone subtype_rel_list subtype_rel_product
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  sqequalRule because_Cache Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  Error :lambdaEquality_alt,  dependent_functionElimination axiomEquality Error :functionIsTypeImplies,  Error :functionIsType,  instantiate unionEquality cumulativity universeEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  setEquality atomEquality natural_numberEquality applyEquality equalityTransitivity equalitySymmetry unionElimination Error :equalityIstype,  independent_functionElimination Error :unionIsType,  setElimination rename Error :setIsType,  independent_isectElimination

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].
    family-monotone\{i:l\}(P;\mlambda{}X.ptuple(lbl,p.a[lbl;p];X))



Date html generated: 2019_06_20-PM-02_04_02
Last ObjectModification: 2019_02_22-PM-03_32_18

Theory : tuples


Home Index