Nuprl Lemma : tuple-type-monotone

[P:Type]. ∀[F,G:P ⟶ Type].  ∀[v:P List]. (tuple-type(map(F;v)) ⊆tuple-type(map(G;v))) supposing F ⊆ G


Proof




Definitions occuring in Statement :  tuple-type: tuple-type(L) map: map(f;as) list: List sub-family: F ⊆ G uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B or: P ∨ Q istype: istype(T) cons: [a b] decidable: Dec(P) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) sub-family: F ⊆ G bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases map_nil_lemma tupletype_nil_lemma unit_wf2 product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf map_cons_lemma tupletype_cons_lemma istype-nat list_wf sub-family_wf istype-universe null_wf eqtt_to_assert assert_of_null length_wf length_of_nil_lemma subtype_rel_ifthenelse btrue_wf tuple-type_wf map_wf subtype_rel_product eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-T-base nil_wf null-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination promote_hyp hypothesis_subsumption productElimination Error :equalityIstype,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase Error :isectIsTypeImplies,  Error :functionIsType,  universeEquality equalityElimination productEquality cumulativity

Latex:
\mforall{}[P:Type].  \mforall{}[F,G:P  {}\mrightarrow{}  Type].
    \mforall{}[v:P  List].  (tuple-type(map(F;v))  \msubseteq{}r  tuple-type(map(G;v)))  supposing  F  \msubseteq{}  G



Date html generated: 2019_06_20-PM-02_03_56
Last ObjectModification: 2019_02_20-PM-01_03_47

Theory : tuples


Home Index