Nuprl Lemma : ptuple_wf

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[X:P ⟶ Type].  (ptuple(lbl,p.a[lbl;p];X) ∈ P ⟶ Type)


Proof




Definitions occuring in Statement :  ptuple: ptuple(lbl,p.a[lbl; p];X) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ptuple: ptuple(lbl,p.a[lbl; p];X) so_apply: x[s1;s2] prop: all: x:A. B[x] implies:  Q
Lemmas referenced :  less_than_wf length_wf tuple-type_wf map_wf list_wf istype-atom istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :lambdaEquality_alt,  productEquality setEquality atomEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality instantiate unionEquality cumulativity hypothesisEquality universeEquality applyEquality hypothesis equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination Error :equalityIstype,  dependent_functionElimination independent_functionElimination Error :unionIsType,  setElimination rename Error :universeIsType,  axiomEquality Error :functionIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[X:P  {}\mrightarrow{}  Type].
    (ptuple(lbl,p.a[lbl;p];X)  \mmember{}  P  {}\mrightarrow{}  Type)



Date html generated: 2019_06_20-PM-02_03_50
Last ObjectModification: 2019_02_22-PM-03_13_30

Theory : tuples


Home Index