Nuprl Lemma : ptuple_wf
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[X:P ⟶ Type].  (ptuple(lbl,p.a[lbl;p];X) ∈ P ⟶ Type)
Proof
Definitions occuring in Statement : 
ptuple: ptuple(lbl,p.a[lbl; p];X)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ptuple: ptuple(lbl,p.a[lbl; p];X)
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
less_than_wf, 
length_wf, 
tuple-type_wf, 
map_wf, 
list_wf, 
istype-atom, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
Error :lambdaEquality_alt, 
productEquality, 
setEquality, 
atomEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
instantiate, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
applyEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
unionElimination, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
Error :unionIsType, 
setElimination, 
rename, 
Error :universeIsType, 
axiomEquality, 
Error :functionIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[X:P  {}\mrightarrow{}  Type].
    (ptuple(lbl,p.a[lbl;p];X)  \mmember{}  P  {}\mrightarrow{}  Type)
Date html generated:
2019_06_20-PM-02_03_50
Last ObjectModification:
2019_02_22-PM-03_13_30
Theory : tuples
Home
Index