Nuprl Lemma : ptuple-continuous

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)].  type-family-continuous{i:l}(P;λX.ptuple(lbl,p.a[lbl;p];X))


Proof




Definitions occuring in Statement :  ptuple: ptuple(lbl,p.a[lbl; p];X) list: List type-family-continuous: type-family-continuous{i:l}(P;H) uall: [x:A]. B[x] so_apply: x[s1;s2] lambda: λx.A[x] function: x:A ⟶ B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-family-continuous: type-family-continuous{i:l}(P;H) sub-family: F ⊆ G all: x:A. B[x] isect-family: a:A. F[a] subtype_rel: A ⊆B ptuple: ptuple(lbl,p.a[lbl; p];X) nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False pi1: fst(t) pi2: snd(t) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} and: P ∧ Q cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B ext-eq: A ≡ B
Lemmas referenced :  decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le tuple-type_wf map_wf nat_wf list_wf ptuple_wf istype-atom istype-nat istype-universe pi2_wf less_than_wf length_wf pi1_wf subtype_rel_transitivity tuple-type-continuous subtype_rel_self subtype_rel_weakening tuple-type-ext int_seg_wf subtype_rel_list top_wf map-length select-map select_wf int_seg_properties intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma decidable__lt intformless_wf int_formula_prop_less_lemma list-continuity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :lambdaFormation_alt,  Error :lambdaEquality_alt,  isectElimination hypothesisEquality equalityTransitivity equalitySymmetry hypothesis sqequalHypSubstitution because_Cache Error :dependent_set_memberEquality_alt,  natural_numberEquality extract_by_obid dependent_functionElimination thin unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  Error :inhabitedIsType,  productElimination Error :equalityIstype,  Error :dependent_pairEquality_alt,  instantiate unionEquality cumulativity universeEquality isectEquality applyEquality Error :unionIsType,  setElimination rename Error :isectIsType,  axiomEquality Error :functionIsTypeImplies,  Error :functionIsType,  Error :isectIsTypeImplies,  applyLambdaEquality setEquality atomEquality closedConclusion independent_pairFormation int_eqEquality

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].
    type-family-continuous\{i:l\}(P;\mlambda{}X.ptuple(lbl,p.a[lbl;p];X))



Date html generated: 2019_06_20-PM-02_04_00
Last ObjectModification: 2019_02_22-PM-03_23_40

Theory : tuples


Home Index