Nuprl Lemma : ptuple-continuous
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)].  type-family-continuous{i:l}(P;λX.ptuple(lbl,p.a[lbl;p];X))
Proof
Definitions occuring in Statement : 
ptuple: ptuple(lbl,p.a[lbl; p];X)
, 
list: T List
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type-family-continuous: type-family-continuous{i:l}(P;H)
, 
sub-family: F ⊆ G
, 
all: ∀x:A. B[x]
, 
isect-family: ⋂a:A. F[a]
, 
subtype_rel: A ⊆r B
, 
ptuple: ptuple(lbl,p.a[lbl; p];X)
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
ext-eq: A ≡ B
Lemmas referenced : 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
tuple-type_wf, 
map_wf, 
nat_wf, 
list_wf, 
ptuple_wf, 
istype-atom, 
istype-nat, 
istype-universe, 
pi2_wf, 
less_than_wf, 
length_wf, 
pi1_wf, 
subtype_rel_transitivity, 
tuple-type-continuous, 
subtype_rel_self, 
subtype_rel_weakening, 
tuple-type-ext, 
int_seg_wf, 
subtype_rel_list, 
top_wf, 
map-length, 
select-map, 
select_wf, 
int_seg_properties, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
list-continuity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
Error :lambdaFormation_alt, 
Error :lambdaEquality_alt, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
sqequalHypSubstitution, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
Error :inhabitedIsType, 
productElimination, 
Error :equalityIstype, 
Error :dependent_pairEquality_alt, 
instantiate, 
unionEquality, 
cumulativity, 
universeEquality, 
isectEquality, 
applyEquality, 
Error :unionIsType, 
setElimination, 
rename, 
Error :isectIsType, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :functionIsType, 
Error :isectIsTypeImplies, 
applyLambdaEquality, 
setEquality, 
atomEquality, 
closedConclusion, 
independent_pairFormation, 
int_eqEquality
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].
    type-family-continuous\{i:l\}(P;\mlambda{}X.ptuple(lbl,p.a[lbl;p];X))
Date html generated:
2019_06_20-PM-02_04_00
Last ObjectModification:
2019_02_22-PM-03_23_40
Theory : tuples
Home
Index