Nuprl Lemma : tuple-type-ext

[L,L':Type List].  tuple-type(L) ≡ tuple-type(L') supposing (||L|| ||L'|| ∈ ℤ) ∧ (∀i:ℕ||L||. L[i] ≡ L'[i])


Proof




Definitions occuring in Statement :  tuple-type: tuple-type(L) select: L[n] length: ||as|| list: List int_seg: {i..j-} ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q ext-eq: A ≡ B all: x:A. B[x] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: guard: {T}
Lemmas referenced :  subtype_rel_tuple-type int_seg_wf length_wf istype-int length_wf_nat set_subtype_base le_wf int_subtype_base ext-eq_wf select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma list_wf istype-le istype-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis Error :lambdaFormation_alt,  sqequalRule dependent_functionElimination because_Cache equalitySymmetry Error :universeIsType,  natural_numberEquality instantiate universeEquality independent_pairEquality axiomEquality Error :productIsType,  Error :equalityIstype,  applyEquality intEquality Error :lambdaEquality_alt,  sqequalBase Error :functionIsType,  closedConclusion setElimination rename equalityTransitivity unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt

Latex:
\mforall{}[L,L':Type  List].
    tuple-type(L)  \mequiv{}  tuple-type(L')  supposing  (||L||  =  ||L'||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  L[i]  \mequiv{}  L'[i])



Date html generated: 2019_06_20-PM-02_03_06
Last ObjectModification: 2019_02_21-PM-02_27_52

Theory : tuples


Home Index