Nuprl Lemma : tuple-type-ext
∀[L,L':Type List].  tuple-type(L) ≡ tuple-type(L') supposing (||L|| = ||L'|| ∈ ℤ) ∧ (∀i:ℕ||L||. L[i] ≡ L'[i])
Proof
Definitions occuring in Statement : 
tuple-type: tuple-type(L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
subtype_rel_tuple-type, 
int_seg_wf, 
length_wf, 
istype-int, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
ext-eq_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list_wf, 
istype-le, 
istype-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
Error :lambdaFormation_alt, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
equalitySymmetry, 
Error :universeIsType, 
natural_numberEquality, 
instantiate, 
universeEquality, 
independent_pairEquality, 
axiomEquality, 
Error :productIsType, 
Error :equalityIstype, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
sqequalBase, 
Error :functionIsType, 
closedConclusion, 
setElimination, 
rename, 
equalityTransitivity, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :dependent_set_memberEquality_alt
Latex:
\mforall{}[L,L':Type  List].
    tuple-type(L)  \mequiv{}  tuple-type(L')  supposing  (||L||  =  ||L'||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  L[i]  \mequiv{}  L'[i])
Date html generated:
2019_06_20-PM-02_03_06
Last ObjectModification:
2019_02_21-PM-02_27_52
Theory : tuples
Home
Index