Nuprl Lemma : subtype_rel_tuple-type
∀[As,Bs:Type List].  tuple-type(As) ⊆r tuple-type(Bs) supposing (||As|| = ||Bs|| ∈ ℤ) ∧ (∀i:ℕ||As||. (As[i] ⊆r Bs[i]))
Proof
Definitions occuring in Statement : 
tuple-type: tuple-type(L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
less_than': less_than'(a;b)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
nil: []
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cand: A c∧ B
, 
subtract: n - m
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
equal_wf, 
length_wf, 
all_wf, 
int_seg_wf, 
subtype_rel_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
tuple-type_wf, 
equal-wf-base-T, 
nil_wf, 
length_of_nil_lemma, 
subtype_rel_self, 
equal-wf-base, 
tupletype_nil_lemma, 
tupletype_cons_lemma, 
subtype_rel-equal, 
unit_wf2, 
ifthenelse_wf, 
null_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_null, 
length_of_cons_lemma, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
cons_wf, 
add-is-int-iff, 
false_wf, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
lelt_wf, 
list-cases, 
stuck-spread, 
base_wf, 
null_nil_lemma, 
product_subtype_list, 
subtype_rel_transitivity, 
null_cons_lemma, 
btrue_wf, 
and_wf, 
bfalse_wf, 
btrue_neq_bfalse, 
subtype_rel_product, 
decidable__equal_int, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
add-subtract-cancel, 
int_subtype_base, 
squash_wf, 
true_wf, 
select_cons_tl, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
isectEquality, 
productEquality, 
intEquality, 
because_Cache, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
applyEquality, 
cumulativity, 
independent_functionElimination, 
axiomEquality, 
lambdaFormation, 
equalityElimination, 
promote_hyp, 
baseClosed, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
dependent_set_memberEquality, 
imageMemberEquality, 
applyLambdaEquality, 
addEquality, 
hypothesis_subsumption, 
hyp_replacement, 
imageElimination
Latex:
\mforall{}[As,Bs:Type  List].
    tuple-type(As)  \msubseteq{}r  tuple-type(Bs)  supposing  (||As||  =  ||Bs||)  \mwedge{}  (\mforall{}i:\mBbbN{}||As||.  (As[i]  \msubseteq{}r  Bs[i]))
Date html generated:
2017_04_17-AM-09_29_07
Last ObjectModification:
2017_02_27-PM-05_31_29
Theory : tuples
Home
Index