Nuprl Lemma : list-continuity

[X:ℕ ⟶ Type]. ((⋂n:ℕ(X[n] List)) ⊆((⋂n:ℕX[n]) List))


Proof




Definitions occuring in Statement :  list: List nat: subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: less_than': less_than'(a;b) not: ¬A or: P ∨ Q cons: [a b] top: Top exists: x:A. B[x] subtract: m uiff: uiff(P;Q) true: True nat_plus: + decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  istype-nat list_wf istype-universe nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than istype-false istype-le length_wf subtract-1-ge-0 nil_wf nat_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma istype-void le_weakening2 non_neg_length length_wf_nat istype-sqequal condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-zero le-add-cancel subtract_wf le_reflexive one-mul add-mul-special add-associates two-mul mul-distributes-right zero-mul minus-zero add-swap omega-shadow decidable__lt decidable__le not-le-2 minus-minus less-iff-le not-lt-2 reduce_tl_nil_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma cons_wf hd_wf not-ge-2 le-add-cancel2 tl_wf le_wf squash_wf true_wf istype-int length_tl subtype_rel_self iff_weakening_equal le-add-cancel-alt
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut Error :lambdaEquality_alt,  Error :isectIsType,  extract_by_obid hypothesis Error :universeIsType,  sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality axiomEquality Error :functionIsType,  instantiate universeEquality Error :lambdaFormation_alt,  setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination dependent_functionElimination equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  because_Cache isectEquality unionElimination promote_hyp hypothesis_subsumption Error :isect_memberEquality_alt,  Error :equalityIstype,  Error :dependent_pairFormation_alt,  addEquality minusEquality multiplyEquality imageMemberEquality baseClosed closedConclusion

Latex:
\mforall{}[X:\mBbbN{}  {}\mrightarrow{}  Type].  ((\mcap{}n:\mBbbN{}.  (X[n]  List))  \msubseteq{}r  ((\mcap{}n:\mBbbN{}.  X[n])  List))



Date html generated: 2019_06_20-PM-00_44_11
Last ObjectModification: 2019_02_21-PM-03_09_01

Theory : list_0


Home Index