Nuprl Lemma : list-continuity
∀[X:ℕ ⟶ Type]. ((⋂n:ℕ. (X[n] List)) ⊆r ((⋂n:ℕ. X[n]) List))
Proof
Definitions occuring in Statement : 
list: T List
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
or: P ∨ Q
, 
cons: [a / b]
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
true: True
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
istype-nat, 
list_wf, 
istype-universe, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
istype-false, 
istype-le, 
length_wf, 
subtract-1-ge-0, 
nil_wf, 
nat_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
istype-void, 
le_weakening2, 
non_neg_length, 
length_wf_nat, 
istype-sqequal, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
subtract_wf, 
le_reflexive, 
one-mul, 
add-mul-special, 
add-associates, 
two-mul, 
mul-distributes-right, 
zero-mul, 
minus-zero, 
add-swap, 
omega-shadow, 
decidable__lt, 
decidable__le, 
not-le-2, 
minus-minus, 
less-iff-le, 
not-lt-2, 
reduce_tl_nil_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
cons_wf, 
hd_wf, 
not-ge-2, 
le-add-cancel2, 
tl_wf, 
le_wf, 
squash_wf, 
true_wf, 
istype-int, 
length_tl, 
subtype_rel_self, 
iff_weakening_equal, 
le-add-cancel-alt
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaEquality_alt, 
Error :isectIsType, 
extract_by_obid, 
hypothesis, 
Error :universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
axiomEquality, 
Error :functionIsType, 
instantiate, 
universeEquality, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
isectEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
Error :isect_memberEquality_alt, 
Error :equalityIstype, 
Error :dependent_pairFormation_alt, 
addEquality, 
minusEquality, 
multiplyEquality, 
imageMemberEquality, 
baseClosed, 
closedConclusion
Latex:
\mforall{}[X:\mBbbN{}  {}\mrightarrow{}  Type].  ((\mcap{}n:\mBbbN{}.  (X[n]  List))  \msubseteq{}r  ((\mcap{}n:\mBbbN{}.  X[n])  List))
Date html generated:
2019_06_20-PM-00_44_11
Last ObjectModification:
2019_02_21-PM-03_09_01
Theory : list_0
Home
Index