Nuprl Lemma : mk-prec_wf-mrec

[L:MutualRectypeSpec]. ∀[i,labl:Atom]. ∀[x:tuple-type(prec-arg-types(lbl,p.mrec-spec(L;lbl;p);i;labl))].
  mk-prec(labl;x) ∈ mrec(L;i) supposing 0 < ||mrec-spec(L;labl;i)||


Proof




Definitions occuring in Statement :  mrec: mrec(L;i) mrec-spec: mrec-spec(L;lbl;p) mrec_spec: MutualRectypeSpec mk-prec: mk-prec(lbl;x) prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) tuple-type: tuple-type(L) length: ||as|| less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B mrec: mrec(L;i)
Lemmas referenced :  mk-prec_wf mrec-spec_wf istype-less_than length_wf subtype_rel_self mrec_wf tuple-type_wf prec-arg-types_wf istype-atom mrec_spec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin atomEquality sqequalRule Error :lambdaEquality_alt,  hypothesisEquality hypothesis Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  natural_numberEquality instantiate unionEquality cumulativity universeEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :universeIsType

Latex:
\mforall{}[L:MutualRectypeSpec].  \mforall{}[i,labl:Atom].
\mforall{}[x:tuple-type(prec-arg-types(lbl,p.mrec-spec(L;lbl;p);i;labl))].
    mk-prec(labl;x)  \mmember{}  mrec(L;i)  supposing  0  <  ||mrec-spec(L;labl;i)||



Date html generated: 2019_06_20-PM-02_16_30
Last ObjectModification: 2019_02_25-AM-00_17_46

Theory : tuples


Home Index