Nuprl Lemma : mk-prec_wf-mrec
∀[L:MutualRectypeSpec]. ∀[i,labl:Atom]. ∀[x:tuple-type(prec-arg-types(lbl,p.mrec-spec(L;lbl;p);i;labl))].
  mk-prec(labl;x) ∈ mrec(L;i) supposing 0 < ||mrec-spec(L;labl;i)||
Proof
Definitions occuring in Statement : 
mrec: mrec(L;i)
, 
mrec-spec: mrec-spec(L;lbl;p)
, 
mrec_spec: MutualRectypeSpec
, 
mk-prec: mk-prec(lbl;x)
, 
prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
atom: Atom
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
mrec: mrec(L;i)
Lemmas referenced : 
mk-prec_wf, 
mrec-spec_wf, 
istype-less_than, 
length_wf, 
subtype_rel_self, 
mrec_wf, 
tuple-type_wf, 
prec-arg-types_wf, 
istype-atom, 
mrec_spec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
atomEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
instantiate, 
unionEquality, 
cumulativity, 
universeEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :universeIsType
Latex:
\mforall{}[L:MutualRectypeSpec].  \mforall{}[i,labl:Atom].
\mforall{}[x:tuple-type(prec-arg-types(lbl,p.mrec-spec(L;lbl;p);i;labl))].
    mk-prec(labl;x)  \mmember{}  mrec(L;i)  supposing  0  <  ||mrec-spec(L;labl;i)||
Date html generated:
2019_06_20-PM-02_16_30
Last ObjectModification:
2019_02_25-AM-00_17_46
Theory : tuples
Home
Index