Nuprl Lemma : mk-prec_wf

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[i:P]. ∀[labl:{lbl:Atom| 0 < ||a[lbl;i]||} ].
[x:tuple-type(prec-arg-types(lbl,p.a[lbl;p];i;labl))].
  (mk-prec(labl;x) ∈ prec(lbl,p.a[lbl;p];i))


Proof




Definitions occuring in Statement :  mk-prec: mk-prec(lbl;x) prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) prec: prec(lbl,p.a[lbl; p];i) tuple-type: tuple-type(L) length: ||as|| list: List less_than: a < b uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] union: left right natural_number: $n atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) mk-prec: mk-prec(lbl;x) so_apply: x[s1;s2] all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  prec-ext istype-less_than length_wf tuple-type_wf map_wf prec_wf list_wf prec-arg-types_wf istype-atom istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename sqequalRule Error :dependent_pairEquality_alt,  Error :dependent_set_memberEquality_alt,  natural_numberEquality instantiate unionEquality cumulativity universeEquality applyEquality Error :universeIsType,  Error :lambdaEquality_alt,  equalityTransitivity equalitySymmetry Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination Error :equalityIstype,  dependent_functionElimination independent_functionElimination Error :unionIsType,  Error :setIsType,  Error :functionIsType,  productElimination

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[i:P].  \mforall{}[labl:\{lbl:Atom|  0  <  ||a[lbl;i]||\}  ].
\mforall{}[x:tuple-type(prec-arg-types(lbl,p.a[lbl;p];i;labl))].
    (mk-prec(labl;x)  \mmember{}  prec(lbl,p.a[lbl;p];i))



Date html generated: 2019_06_20-PM-02_05_14
Last ObjectModification: 2019_02_22-PM-06_26_11

Theory : tuples


Home Index