Nuprl Lemma : dl-induction
∀[T:dl-Obj() ⟶ TYPE]
  ((∀x:ℕ. T[prog(atm(x))])
  ⇒ (∀x,x1:Prog.  (T[prog(x)] ⇒ T[prog(x1)] ⇒ T[prog((x;x1))]))
  ⇒ (∀x,x1:Prog.  (T[prog(x)] ⇒ T[prog(x1)] ⇒ T[prog(x ⋃ x1)]))
  ⇒ (∀x:Prog. (T[prog(x)] ⇒ T[prog((x)*)]))
  ⇒ (∀x:Prop. (T[prop(x)] ⇒ T[prog((x)?)]))
  ⇒ (∀x:ℕ. T[prop(atm(x))])
  ⇒ T[prop(0)]
  ⇒ (∀x,x1:Prop.  (T[prop(x)] ⇒ T[prop(x1)] ⇒ T[prop(x ⇒ x1)]))
  ⇒ (∀x,x1:Prop.  (T[prop(x)] ⇒ T[prop(x1)] ⇒ T[prop(x ∧ x1)]))
  ⇒ (∀x,x1:Prop.  (T[prop(x)] ⇒ T[prop(x1)] ⇒ T[prop(x ∨ x1)]))
  ⇒ (∀x:Prog. ∀x1:Prop.  (T[prog(x)] ⇒ T[prop(x1)] ⇒ T[prop([x] x1)]))
  ⇒ (∀x:Prog. ∀x1:Prop.  (T[prog(x)] ⇒ T[prop(x1)] ⇒ T[prop(<x> x1)]))
  ⇒ (∀x:dl-Obj(). T[x]))
Proof
Definitions occuring in Statement : 
dl-diamond: <x1> x, 
dl-box: [x1] x, 
dl-or: x1 ∨ x, 
dl-and: x1 ∧ x, 
dl-implies: x1 ⇒ x, 
dl-false: 0, 
dl-aprop: atm(x), 
dl-test: (x)?, 
dl-iterate: (x)*, 
dl-choose: x1 ⋃ x, 
dl-comp: (x1;x), 
dl-aprog: atm(x), 
dl-prop-obj: prop(x), 
dl-prog-obj: prog(x), 
dl-prop: Prop, 
dl-prog: Prog, 
dl-Obj: dl-Obj(), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
mrecind: mrecind(L;x.P[x]), 
mkinds: mKinds, 
eager-map: eager-map(f;as), 
list_ind: list_ind, 
dl-Spec: dl-Spec(), 
cons: [a / b], 
pi1: fst(t), 
nil: [], 
it: ⋅, 
member: t ∈ T, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
mrec-spec: mrec-spec(L;lbl;p), 
apply-alist: apply-alist(eq;L;x), 
ifthenelse: if b then t else f fi , 
atom-deq: AtomDeq, 
eq_atom: x =a y, 
btrue: tt, 
pi2: snd(t), 
top: Top, 
eqof: eqof(d), 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl), 
int_seg: {i..j-}, 
nat: ℕ, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
false: False, 
select: L[n], 
dl-aprog: atm(x), 
dl-prog-obj: prog(x), 
le: A ≤ B, 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
mrec: mrec(L;i), 
nequal: a ≠ b ∈ T , 
select-tuple: x.n, 
eq_int: (i =z j), 
subtract: n - m, 
dl-prog: Prog, 
dl-comp: (x1;x), 
so_apply: x[s], 
dl-choose: x1 ⋃ x, 
dl-iterate: (x)*, 
dl-prop-obj: prop(x), 
dl-prop: Prop, 
dl-test: (x)?, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
dl-aprop: atm(x), 
dl-false: 0, 
dl-implies: x1 ⇒ x, 
dl-and: x1 ∧ x, 
dl-or: x1 ∨ x, 
dl-box: [x1] x, 
dl-diamond: <x1> x, 
iff: P ⇐⇒ Q, 
so_lambda: λ2x.t[x], 
dl-Obj: dl-Obj()
Lemmas referenced : 
decidable__atom_equal, 
subtype_base_sq, 
atom_subtype_base, 
apply_alist_cons_lemma, 
istype-void, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
length_of_cons_lemma, 
length_of_nil_lemma, 
atomdeq_reduce_lemma, 
map_cons_lemma, 
map_nil_lemma, 
tupletype_cons_lemma, 
null_nil_lemma, 
tupletype_nil_lemma, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
int_seg_wf, 
decidable__equal_int, 
int_subtype_base, 
int_seg_properties, 
true_wf, 
int_seg_subtype_special, 
int_seg_cases, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
null_cons_lemma, 
dl-prog-obj_wf, 
mrec_wf, 
dl-Spec_wf, 
dl-prop-obj_wf, 
istype-atom, 
length_wf, 
mrec-spec_wf, 
unit_wf2, 
cons_member, 
cons_wf, 
nil_wf, 
member_singleton, 
mkinds_wf, 
mrec_ind_wf, 
mobj_wf, 
dl-Obj_wf, 
dl-diamond_wf, 
dl-box_wf, 
dl-or_wf, 
dl-and_wf, 
dl-implies_wf, 
dl-false_wf, 
dl-aprop_wf, 
dl-prop_wf, 
dl-test_wf, 
dl-iterate_wf, 
dl-choose_wf, 
dl-prog_wf, 
dl-comp_wf, 
istype-nat, 
dl-aprog_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
sqequalHypSubstitution, 
setElimination, 
rename, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
tokenEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
atomEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
inhabitedIsType, 
equalityElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
universeIsType, 
productIsType, 
functionIsType, 
intEquality, 
hypothesis_subsumption, 
int_eqEquality, 
equalityIstype, 
promote_hyp, 
TYPEMemberIsType, 
applyEquality, 
imageElimination, 
setIsType, 
unionEquality, 
universeEquality, 
TYPEIsType
Latex:
\mforall{}[T:dl-Obj()  {}\mrightarrow{}  TYPE]
    ((\mforall{}x:\mBbbN{}.  T[prog(atm(x))])
    {}\mRightarrow{}  (\mforall{}x,x1:Prog.    (T[prog(x)]  {}\mRightarrow{}  T[prog(x1)]  {}\mRightarrow{}  T[prog((x;x1))]))
    {}\mRightarrow{}  (\mforall{}x,x1:Prog.    (T[prog(x)]  {}\mRightarrow{}  T[prog(x1)]  {}\mRightarrow{}  T[prog(x  \mcup{}  x1)]))
    {}\mRightarrow{}  (\mforall{}x:Prog.  (T[prog(x)]  {}\mRightarrow{}  T[prog((x)*)]))
    {}\mRightarrow{}  (\mforall{}x:Prop.  (T[prop(x)]  {}\mRightarrow{}  T[prog((x)?)]))
    {}\mRightarrow{}  (\mforall{}x:\mBbbN{}.  T[prop(atm(x))])
    {}\mRightarrow{}  T[prop(0)]
    {}\mRightarrow{}  (\mforall{}x,x1:Prop.    (T[prop(x)]  {}\mRightarrow{}  T[prop(x1)]  {}\mRightarrow{}  T[prop(x  {}\mRightarrow{}  x1)]))
    {}\mRightarrow{}  (\mforall{}x,x1:Prop.    (T[prop(x)]  {}\mRightarrow{}  T[prop(x1)]  {}\mRightarrow{}  T[prop(x  \mwedge{}  x1)]))
    {}\mRightarrow{}  (\mforall{}x,x1:Prop.    (T[prop(x)]  {}\mRightarrow{}  T[prop(x1)]  {}\mRightarrow{}  T[prop(x  \mvee{}  x1)]))
    {}\mRightarrow{}  (\mforall{}x:Prog.  \mforall{}x1:Prop.    (T[prog(x)]  {}\mRightarrow{}  T[prop(x1)]  {}\mRightarrow{}  T[prop([x]  x1)]))
    {}\mRightarrow{}  (\mforall{}x:Prog.  \mforall{}x1:Prop.    (T[prog(x)]  {}\mRightarrow{}  T[prop(x1)]  {}\mRightarrow{}  T[prop(<x>  x1)]))
    {}\mRightarrow{}  (\mforall{}x:dl-Obj().  T[x]))
Date html generated:
2019_10_15-AM-11_41_52
Last ObjectModification:
2019_03_26-AM-11_18_35
Theory : dynamic!logic
Home
Index