Nuprl Lemma : mrec_ind_wf
∀L:MutualRectypeSpec. ∀[P:mobj(L) ⟶ TYPE]. ∀[h:mrecind(L;x.P[x])]. ∀[x:mobj(L)].  (mrec_ind(L;h;x) ∈ P[x])
Proof
Definitions occuring in Statement : 
mrec_ind: mrec_ind(L;h;x)
, 
mrecind: mrecind(L;x.P[x])
, 
mobj: mobj(L)
, 
mrec_spec: MutualRectypeSpec
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mrec_ind: mrec_ind(L;h;x)
, 
mrec-induction2-ext, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
mrec-induction2-ext, 
mobj_wf, 
istype-mrecind, 
mrec_spec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
Error :inhabitedIsType, 
independent_functionElimination, 
hypothesisEquality, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
axiomEquality, 
Error :universeIsType, 
isectElimination, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :lambdaEquality_alt, 
Error :functionIsType, 
Error :TYPEIsType
Latex:
\mforall{}L:MutualRectypeSpec
    \mforall{}[P:mobj(L)  {}\mrightarrow{}  TYPE].  \mforall{}[h:mrecind(L;x.P[x])].  \mforall{}[x:mobj(L)].    (mrec\_ind(L;h;x)  \mmember{}  P[x])
Date html generated:
2019_06_20-PM-02_16_23
Last ObjectModification:
2019_03_12-PM-11_32_21
Theory : tuples
Home
Index