Nuprl Lemma : mrec_ind_wf

L:MutualRectypeSpec. ∀[P:mobj(L) ⟶ TYPE]. ∀[h:mrecind(L;x.P[x])]. ∀[x:mobj(L)].  (mrec_ind(L;h;x) ∈ P[x])


Proof




Definitions occuring in Statement :  mrec_ind: mrec_ind(L;h;x) mrecind: mrecind(L;x.P[x]) mobj: mobj(L) mrec_spec: MutualRectypeSpec uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T mrec_ind: mrec_ind(L;h;x) mrec-induction2-ext subtype_rel: A ⊆B implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  mrec-induction2-ext mobj_wf istype-mrecind mrec_spec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  introduction cut sqequalRule applyEquality thin instantiate extract_by_obid hypothesis because_Cache sqequalHypSubstitution Error :inhabitedIsType,  independent_functionElimination hypothesisEquality Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination axiomEquality Error :universeIsType,  isectElimination Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :lambdaEquality_alt,  Error :functionIsType,  Error :TYPEIsType

Latex:
\mforall{}L:MutualRectypeSpec
    \mforall{}[P:mobj(L)  {}\mrightarrow{}  TYPE].  \mforall{}[h:mrecind(L;x.P[x])].  \mforall{}[x:mobj(L)].    (mrec\_ind(L;h;x)  \mmember{}  P[x])



Date html generated: 2019_06_20-PM-02_16_23
Last ObjectModification: 2019_03_12-PM-11_32_21

Theory : tuples


Home Index