Nuprl Lemma : mrec-induction2-ext
∀L:MutualRectypeSpec. ∀[P:mobj(L) ⟶ TYPE]. (mrecind(L;x.P[x]) ⇒ (∀x:mobj(L). P[x]))
Proof
Definitions occuring in Statement : 
mrecind: mrecind(L;x.P[x]), 
mobj: mobj(L), 
mrec_spec: MutualRectypeSpec, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T, 
mobj-kind: mobj-kind(x), 
pi1: fst(t), 
mobj-label: mobj-label(x), 
prec-label: prec-label(x), 
mobj-data: mobj-data(x), 
pi2: snd(t), 
mobj-tuple: mobj-tuple(x), 
prec-tuple: prec-tuple(x), 
mrec-spec: mrec-spec(L;lbl;p), 
nil: [], 
it: ⋅, 
genrec-ap: genrec-ap, 
let: let, 
mrec-induction2, 
mrec-induction, 
mobj-ext, 
prec-induction-ext
Lemmas referenced : 
mrec-induction2, 
mrec-induction, 
mobj-ext, 
prec-induction-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}L:MutualRectypeSpec.  \mforall{}[P:mobj(L)  {}\mrightarrow{}  TYPE].  (mrecind(L;x.P[x])  {}\mRightarrow{}  (\mforall{}x:mobj(L).  P[x]))
Date html generated:
2019_06_20-PM-02_16_18
Last ObjectModification:
2019_03_25-PM-11_28_29
Theory : tuples
Home
Index