Nuprl Lemma : mrec-induction2-ext

L:MutualRectypeSpec. ∀[P:mobj(L) ⟶ TYPE]. (mrecind(L;x.P[x])  (∀x:mobj(L). P[x]))


Proof




Definitions occuring in Statement :  mrecind: mrecind(L;x.P[x]) mobj: mobj(L) mrec_spec: MutualRectypeSpec uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T mobj-kind: mobj-kind(x) pi1: fst(t) mobj-label: mobj-label(x) prec-label: prec-label(x) mobj-data: mobj-data(x) pi2: snd(t) mobj-tuple: mobj-tuple(x) prec-tuple: prec-tuple(x) mrec-spec: mrec-spec(L;lbl;p) nil: [] it: genrec-ap: genrec-ap let: let mrec-induction2 mrec-induction mobj-ext prec-induction-ext
Lemmas referenced :  mrec-induction2 mrec-induction mobj-ext prec-induction-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}L:MutualRectypeSpec.  \mforall{}[P:mobj(L)  {}\mrightarrow{}  TYPE].  (mrecind(L;x.P[x])  {}\mRightarrow{}  (\mforall{}x:mobj(L).  P[x]))



Date html generated: 2019_06_20-PM-02_16_18
Last ObjectModification: 2019_03_25-PM-11_28_29

Theory : tuples


Home Index