Nuprl Lemma : mrec-induction

[L:MutualRectypeSpec]. ∀[P:mobj(L) ⟶ TYPE].
  ((∀x:mobj(L). ((∀z:{z:mobj(L)| z < x} P[z])  P[x]))  (∀x:mobj(L). P[x]))


Proof




Definitions occuring in Statement :  mrec-lt: x < y mobj: mobj(L) mrec_spec: MutualRectypeSpec uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q implies:  Q mrec: mrec(L;i) all: x:A. B[x] so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} mobj: mobj(L) mkinds: mKinds mrec-lt: x < y uimplies: supposing a prop:
Lemmas referenced :  mobj-ext mrec_wf istype-atom prec-induction-ext mrec-spec_wf prec_wf subtype_rel-equal mtype_wf mtype-sqequal mrec-lt_wf prec_sub+_wf subtype_rel_self mobj_wf mrec_spec_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination Error :lambdaFormation_alt,  sqequalRule applyEquality Error :dependent_pairEquality_alt,  Error :universeIsType,  atomEquality Error :lambdaEquality_alt,  Error :inhabitedIsType,  dependent_functionElimination independent_functionElimination because_Cache setElimination rename Error :dependent_set_memberEquality_alt,  independent_isectElimination Error :setIsType,  Error :functionIsType,  instantiate universeEquality Error :TYPEMemberIsType,  Error :TYPEIsType

Latex:
\mforall{}[L:MutualRectypeSpec].  \mforall{}[P:mobj(L)  {}\mrightarrow{}  TYPE].
    ((\mforall{}x:mobj(L).  ((\mforall{}z:\{z:mobj(L)|  z  <  x\}  .  P[z])  {}\mRightarrow{}  P[x]))  {}\mRightarrow{}  (\mforall{}x:mobj(L).  P[x]))



Date html generated: 2019_06_20-PM-02_15_52
Last ObjectModification: 2019_03_12-PM-06_12_37

Theory : tuples


Home Index