Nuprl Lemma : prec_sub+_wf
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)].
  (prec_sub+(P;lbl,p.a[lbl;p]) ∈ (i:P × prec(lbl,p.a[lbl;p];i)) ⟶ (i:P × prec(lbl,p.a[lbl;p];i)) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
prec_sub+: prec_sub+(P;lbl,p.a[lbl; p])
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prec_sub+: prec_sub+(P;lbl,p.a[lbl; p])
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
rel_plus_wf, 
prec_wf, 
istype-atom, 
prec_sub_wf, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inhabitedIsType, 
hypothesis, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
instantiate, 
unionEquality, 
cumulativity, 
universeEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].
    (prec\_sub+(P;lbl,p.a[lbl;p])  \mmember{}  (i:P  \mtimes{}  prec(lbl,p.a[lbl;p];i))
      {}\mrightarrow{}  (i:P  \mtimes{}  prec(lbl,p.a[lbl;p];i))
      {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_06_20-PM-02_14_23
Last ObjectModification:
2019_02_23-PM-04_56_44
Theory : tuples
Home
Index