Nuprl Lemma : prec_sub+_wf

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)].
  (prec_sub+(P;lbl,p.a[lbl;p]) ∈ (i:P × prec(lbl,p.a[lbl;p];i)) ⟶ (i:P × prec(lbl,p.a[lbl;p];i)) ⟶ ℙ)


Proof




Definitions occuring in Statement :  prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]) prec: prec(lbl,p.a[lbl; p];i) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  rel_plus_wf prec_wf istype-atom prec_sub_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  hypothesis Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  instantiate unionEquality cumulativity universeEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].
    (prec\_sub+(P;lbl,p.a[lbl;p])  \mmember{}  (i:P  \mtimes{}  prec(lbl,p.a[lbl;p];i))
      {}\mrightarrow{}  (i:P  \mtimes{}  prec(lbl,p.a[lbl;p];i))
      {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-02_14_23
Last ObjectModification: 2019_02_23-PM-04_56_44

Theory : tuples


Home Index