Nuprl Lemma : mobj-ext

[L:MutualRectypeSpec]. mobj(L) ≡ i:Atom × mrec(L;i)


Proof




Definitions occuring in Statement :  mobj: mobj(L) mrec: mrec(L;i) mrec_spec: MutualRectypeSpec ext-eq: A ≡ B uall: [x:A]. B[x] product: x:A × B[x] atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q mobj: mobj(L) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B mkinds: mKinds all: x:A. B[x] mrec: mrec(L;i) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] mrec_spec: MutualRectypeSpec pi1: fst(t) prop:
Lemmas referenced :  subtype_rel_product mkinds_wf mtype_wf mrec_wf istype-atom subtype_rel-equal mtype-sqequal mrec_spec_wf prec-ext mrec-spec_wf mrec-label-cases2 l_member_wf eager-map_wf list_wf atom-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :lambdaEquality_alt,  Error :universeIsType,  atomEquality independent_isectElimination setElimination rename because_Cache Error :lambdaFormation_alt,  Error :productIsType,  productElimination independent_pairEquality axiomEquality Error :inhabitedIsType,  promote_hyp hypothesis_subsumption applyEquality dependent_functionElimination Error :dependent_set_memberEquality_alt,  instantiate closedConclusion productEquality cumulativity unionEquality universeEquality Error :dependent_pairEquality_alt,  equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:MutualRectypeSpec].  mobj(L)  \mequiv{}  i:Atom  \mtimes{}  mrec(L;i)



Date html generated: 2019_06_20-PM-02_15_24
Last ObjectModification: 2019_02_25-PM-03_19_23

Theory : tuples


Home Index