Nuprl Lemma : mrec-induction2

L:MutualRectypeSpec. ∀[P:mobj(L) ⟶ TYPE]. (mrecind(L;x.P[x])  (∀x:mobj(L). P[x]))


Proof




Definitions occuring in Statement :  mrecind: mrecind(L;x.P[x]) mobj: mobj(L) mrec_spec: MutualRectypeSpec uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] mrecind: mrecind(L;x.P[x]) mkinds: mKinds int_seg: {i..j-} uimplies: supposing a lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: true: True ext-eq: A ≡ B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B mrec: mrec(L;i) outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt sq_type: SQType(T) guard: {T} prec-arg-types: prec-arg-types(lbl,p.a[lbl; p];i;lbl) less_than': less_than'(a;b) cand: c∧ B mrec-lt: x < y prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]) prec_sub: prec_sub(P;lbl,p.a[lbl; p]) prec-sub: prec-sub(P;lbl,p.a[lbl; p];j;x;i;y) dest-prec: dest-prec(x) mk-prec: mk-prec(lbl;x) let: let bfalse: ff uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q outr: outr(x) bnot: ¬bb l_all: (∀x∈L.P[x])
Lemmas referenced :  istype-mrecind mobj_wf mrec_spec_wf mrec-induction select_wf mrec-spec_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt length_wf intformless_wf int_formula_prop_less_lemma int_seg_wf mrec-lt_wf mobj-ext mk-prec_wf subtype_rel_self mrec_wf tuple-type_wf prec-arg-types_wf istype-atom istype-less_than mkinds_wf subtype_base_sq union_subtype_base atom_subtype_base outl_wf equal_wf assert_wf btrue_wf bfalse_wf btrue_neq_bfalse select-map subtype_rel_list top_wf select-tuple_wf int_seg_subtype_nat istype-false length-map implies-rel_plus prec_wf prec_sub_wf int_subtype_base istype-true squash_wf true_wf istype-universe inl-one-one not-0-eq-1 inr-one-one iff_weakening_equal outr_wf bnot_wf list_wf l_member_wf select_member mobj-sq mobj-kind_wf mobj-label_wf mobj-tuple_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality Error :universeIsType,  hypothesis Error :functionIsType,  Error :TYPEIsType,  independent_functionElimination dependent_functionElimination setElimination rename instantiate closedConclusion unionEquality cumulativity atomEquality universeEquality because_Cache independent_isectElimination productElimination imageElimination natural_numberEquality unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :inhabitedIsType,  Error :equalityIstype,  equalityTransitivity equalitySymmetry Error :setIsType,  Error :dependent_pairEquality_alt,  Error :TYPEMemberIsType,  Error :dependent_set_memberEquality_alt,  Error :productIsType,  applyLambdaEquality promote_hyp hyp_replacement Error :inlEquality_alt,  baseApply baseClosed sqequalBase productEquality Error :inlFormation_alt,  Error :unionIsType,  intEquality imageMemberEquality Error :inrEquality_alt,  Error :inrFormation_alt

Latex:
\mforall{}L:MutualRectypeSpec.  \mforall{}[P:mobj(L)  {}\mrightarrow{}  TYPE].  (mrecind(L;x.P[x])  {}\mRightarrow{}  (\mforall{}x:mobj(L).  P[x]))



Date html generated: 2019_06_20-PM-02_16_16
Last ObjectModification: 2019_03_12-PM-11_30_30

Theory : tuples


Home Index