Nuprl Lemma : not-0-eq-1

¬(0 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  not: ¬A natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q not: ¬A true: True
Lemmas referenced :  equal-wf-base
Rules used in proof :  hypothesis baseClosed intEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalBase baseInt natural_numberEquality

Latex:
\mneg{}(0  =  1)



Date html generated: 2019_06_20-AM-11_18_30
Last ObjectModification: 2018_10_16-PM-02_54_31

Theory : core_2


Home Index