Nuprl Lemma : not-0-eq-1
¬(0 = 1 ∈ ℤ)
Proof
Definitions occuring in Statement : 
not: ¬A
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
true: True
Lemmas referenced : 
equal-wf-base
Rules used in proof : 
hypothesis, 
baseClosed, 
intEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalBase, 
baseInt, 
natural_numberEquality
Latex:
\mneg{}(0  =  1)
Date html generated:
2019_06_20-AM-11_18_30
Last ObjectModification:
2018_10_16-PM-02_54_31
Theory : core_2
Home
Index