Nuprl Lemma : inr-one-one
∀[A,B:Type]. ∀[x,y:B].  uiff((inr x ) = (inr y ) ∈ (A + B);x = y ∈ B)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
inr: inr x 
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
unionElimination, 
thin, 
hypothesisEquality, 
unionEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
inrEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x,y:B].    uiff((inr  x  )  =  (inr  y  );x  =  y)
Date html generated:
2016_05_13-PM-03_20_14
Last ObjectModification:
2015_12_26-AM-09_10_58
Theory : union
Home
Index